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INTRODUCTION 

EIGHTEENTH-CENTURY British mathematics does not enjoy a good 
reputation. The eighteenth century, a 'period of indecision'I as many 
historians would say, is said to have witnessed 'the crisis' or the 'decline' 
of mathematics in the country of Newton, Wallis and Barrow. However, 
even a glance at the following list of names should be sufficient to refute 
the prevailing image of eighteenth-century British mathematics. To the 
imported Abraham de Moivre one can add the native Brook Taylor, James 
Stirling, Edmond Halley, Roger Cotes, Thomas Bayes, Colin Maclaurin, 
Thomas Simpson, Matthew Stewart, John Landen and Edward Waring. 
Through their work they contributed to several branches of mathematics: 
algebra, pure geometry, physical astronomy, pure and applied calculus 
and probability. 

I devote this work to a theory that all these natural philosophers knew 
very well: the calculus of fluxions. This was the British equivalent of the 
more famous continental differential and integral calculus. It is usually 
agreed that the calculus of fluxions was clumsy in notation and awkward 
in methodology: the preference given to Newton's dots and to geometrical 
methods engendered a period which was eventually labelled as the 'Dot­
Age'. 2 Furthermore, the calculus of fluxions is usually indicated as the 
principal cause of the decadence of British mathematics: the 'Dot-Age' 
was the price paid for a chauvinistic attachment to Newton's theory. 

The origin of this depressing image of the Newtonian calculus can be 
easily traced back to the irreverent writings of the Cambridge Analytical 
Society's fellows who, at the beginning of the nineteenth century, tried to 
introduce into Great Britain the algebraical methods of Lagrange and 
Arbogast. 3 Like all the reformers, they offered a pessimistic view of the past. 
Since then, many historians have behaved as loyal members of the 
Analytical Society, and a standard account of the eighteenth-century 
fluxional calculus has been given in the histories of mathematics. For 
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viii INTRODUCTION 

instance, in Koppelman (1971) we find stated that the 'quiescence' of 
English mathematics in the eighteenth century depended upon the 
isolation of English mathematicians from the continent. The reason for this 
isolation is attributed to the' bitterness engendered by the Newton-Leibpiz 
priority controversy' and to the 'insularity of the English'. The result of 
this situation was, according to Koppelman, that 'the Newtonian school 
clung to a clumsy notation and, perhaps even more important, to a 
reliance on geometric methods out of a misguided belief that these 
represented the spirit of Newton' (Koppelman (1971), PP: 155-6). 

The difference between Newton's and Leibniz's notation has been given 
too much importance. Even though there are some reasons for preferring 
the differential notation, it is certain that the progress of the calculus of 
fluxions was not dependent upon the choice between the dots and the d's. 
Indeed the fluxional notation is still successfully used in mechanics to 
express the derivatives as a function of time. 

Another commonplace misinterpretation is that British mathematicians 
used geometrical methods. It is not clear to me how the researches of 
Stirling on interpolation, or of Taylor on finite differences, the second book 
of Maclaurin's Treatise o/Fluxions (1742), the work of Simpson on physical 
astronomy and geodesy, the results of Landen on infinite series and elliptic 
integrals, and those of Waring on fluxional equations could be defined as 
geometrical. Many British mathematicians consciously departed from the 
geometrical methods of the Principia, and they did so with different 
motivations and different results. 

The current account of the decline of the calculus of fluxions also 
includes sociological discussions. It is maintained that the practical bent of 
a country dominated by the industrial revolution together with the 
chauvinistic isolation of British scientists caused the stagnation of 
mathematics. However, many British scientists cultivated a deep interest 
in pure research, for instance in pure geometry or cosmology, and in Great 
Britain there was a considerable interest in mathematics as the many 
'philomaths' mathematical serials show. The existence of a chauvinistic 
myth for the Philosophia Britannica4 is undeniable, but this does not imply 
that there was a total separation between continental and British 
scientists. For instance, continental and British astronomers were in close 
contact. Furthermore, the theory of the' golden isolation' of the fluxionists 
does not explain why there should be so many letters from continental 
mathematicians in the correspondence of Stirling and Maclaurin and why 
there existed several translations from continental mathematical works 
into English using Newton's notation. 5 
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It is disappointing that the only work devoted to the eighteenth-century 
British calculus, Florian Cajori's A History of the Conceptions of Limits and 
Fluxions in Great Britain from Newton to Woodhouse (1919), restates the 
usual account. For instance, on p. 254 Cajori simply says that 'Newton's 
notation was poor and Leibniz's philosophy of the calculus was poor', a 
statement which historians of Leibniz's mathematics would not easily 
accept; while on p. 279 we find that' the doctrine of fluxions was so closely 
associated with geometry, to the neglect of analysis, that, apparently, 
certain British writers held the view that fluxions were a branch of 
geometry'. 

Furthermore, Cajori is interested only in the definitions of the term 
. fluxion'. Since these definitions did not change very much during a whole 
century and were generally unsatisfactory from a modem point of view, he 
takes it as an argument in favour of the thesis of the decline of the British 
calculus. Cajori's quotations are invariably taken from introductions and 
prefaces of treatises on fluxions. The reader is left without any information 
about the authors, the length and contents of their works, and the purposes 
for which they were written. 

Thanks to the recent works of Schneider (1968), Gowing (1983) and 
Feigenbaum (1985) we have acquired a very good knowledge of de 
Moivre, Cotes and Taylor. However, it seemed to me necessary to study the 
whole period from Newton's work to the reform of the calculus in the early 
nineteenth century. I will offer a general survey of the development of the 
calculus in Great Britain; I will not consider therefore the impact of the 
Newtonian calculus on continental mathematics. I will try to concentrate 
especially on aspects which are not covered in other works. Whenever it 
is possible, I will refer the reader to studies which cover specific subjects or 
authors. First of all, I will take for granted a knowledge of Newton's 
mathematical work, which has been extensively and masterfully studied 
by Whiteside in his well-known edition of Newton's mathematical papers. 
Other works which have been useful are: Tweedie (1922) and Krieger 
(1968) on Stirling; Eagles (1977a) and (1977b) on David Gregory; Clarke 
(1929) on Simpson; Tweedie (1915), Turnbull (1951) and Scott (1971) 
on Maclaurin; Grattan-Guinness (1969) and Giorello (1985) on Berkeley; 
Trail (1812) on Simson; Chasles (1875) on Simson, Stewart and 
Maclaurin; Smith (1980) on Bayes; and Bos (1974) on the differential 
calculus. The Dictionary of National Biography, the Dictionary of Scientific 
Biography and E.G.R. Taylor's Mathematical Practitioners (1954) and 
(1966), have been indispensable tools in this work. However, the most 
important source of information on the lives and works of British 
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mathematicians is the monumental P.J. and R.V. Wallis's Biobibliography 
of British Mathematics and its Applications (1986). which I have been able 
to use at the final stage of my research. 

The Overture is devoted to Newton's published work on the calculus of 
fluxions. Its aim is to present the fundamental elements of Newton's 
calculus. 

The first chapter is concerned with the early diffusion of the calculus of 
fluxions from 1700 to 1730. The first attempts to popularize the 
Newtonian calculus were carried out by quite obscure mathematics 
teachers and itinerant lecturers. such as Charles Hayes. John Harris. 
Humphry Ditton and Edmund Stone. An analysis of their textbooks shows 
that they were influenced by the Leibnizian as well as by the Newtonian 
tradition. The second chapter deals with the research in pure mathematics 
done by the early Newtonians. Of particular importance are the researches 
on integration by Roger Cotes. on finite differences by James Stirling and 
Brook Taylor. and on higher ordered curves by Colin Maclaurin. It seems 
that early Newtonians. rather than researching the calculus of fluxions. 
developed related theories. especially the theory of series. In the third 
chapter space is given to the controversy on the foundations of the 
calculus originated by Berkeley's Analyst (1734). The most authoritative 
answer to Berkeley was in Maclaurin's Treatise of Fluxions (1742): the true 
manifesto of the fluxionists. 

The fourth. fifth and sixth chapters are devoted to the middle period of 
the fluxional school. roughly from 1736 to I7 8 5. The production of new 
treatises and the improvements in the applications of the calculus of 
fluxions occupy. respectively. the fourth and fifth chapters. Particular 
importance is given to Maclaurin's and Simpson's study on the attraction 
of ellipsoids. The sixth chapter is concerned with the attempts made by 
some British mathematicians to develop new techniques in the calculus. A 
comparison with the progress on the continent shows that the Leibnizian 
calculus developed into a new form: it became an analytical tool dealing 
with multivariate functions. Interest in the work of continentals stimulated 
Thomas Simpson. John Landen and Edward Waring. H9wever. they 
largely failed to understand the novelty of the analytical techniques of the 
continentals. 

Chapters 7. 8 and 9 are devoted to the reform of the calculus which took 
place in the period 1775-1820. Four schools of reformers were involved. 
geographically situated in Edinburgh. the military schools of Woolwich 
and Sandhurst. Cambridge and Dublin. This part of the book is based on 
completely unknown material. the contribution of two generations of 
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British mathematicians having been ignored by historians. It is argued 
that the work of these mathematicians. including Charles Hutton. John 
Playfair. James Ivory. William Wallace. John Brinkley and Robert 
Woodhouse. laid the foundations for the resurrection of British math­
ematics in the first half of the nineteenth century. 

In Appendix A I have grouped the tables which give information on the 
content. and in appendix B I have given the prices of some textbooks on 
fluxions. Appendix C lists the Chairs of Mathematics in Cambridge. Oxford. 
Edinburgh. Glasgow. St Andrews. Aberdeen and Dublin. and Appendix D 
gives information on the teaching of mathematics in the military schools 
at Woolwich. Sandhurst and Portsmouth. A subject index of the primary 
literature is given in Appendix E. and a list of the manuscript sources used 
is in Appendix F. 

After these appendices the reader will find the endnotes. the general 
bibliography and the index. 

This book therefore covers more than a century. From necessity I have 
been extremely selective in the analysis and discussion of the works 
connected with the development of the fluxional calculus. I have chosen 
those which appeared to me more exemplary of the level of research and 
style of a determinate mathematician or group of mathematicians. In 
compiling the bibliography. on the other hand. I have tried to be as 
complete as possible. I hope that my work will be useful as a first survey 
and historical assessment of the contributions (and failures) of British 
mathematicians in the eighteenth century. 

This book is an improved version of my Ph.D. thesis submitted in June 
1987 to the Council for National Academic Awards. A three year 
scholarship of the Italian Ministero della Pubblica Istruzione (D.M. 
27.1.83) and a two year appointment as part-time research assistant at 
Middlesex Polytechnic (UK) provided the financial support which allowed 
me to complete my doctorate. My interest in Newton's calculus originates 
from the thesis I wrote in 1981-2 under the supervision of Prof. Corrado 
Mangione at Milan University. I was then encouraged by several friends. 
among whom the most encouraging was Giulio Giorello. to pursue and 
extend my research. Next I must mention Allan Findlay and Ivor Grattan­
Guinness. the supervisors of my Ph.D. thesis during the years 1984 to 
1987. Ivor followed my every step and gave to me all his encyclopaedic 
assistance: lowe very much to his competence. but especially to his 
friendship. I would like also to thank Eric Aiton. the external examiner of 
my Ph.D.. who directed my attention on many points which needed 
amendments and additions. During several stays in Cambridge I received 
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advice from Michael Hoskin and Simon Schaffer. In Cambridge I had the 
privilege of meeting Tom Whiteside, the great authority on Newton's 
mathematics, who, with great kindness and generosity, criticized several 
drafts of my book. I also owe a great deal to Roger Bray for giving me 
important information on the military schools, to Jennifer Carter for her 
kind letters on Aberdeen University, to Marco Panza for sending me early 
drafts of his (1989), and to Eric Sageng for his advice on James Gregory 
and Colin Maclaurin. Luca Bianchi, Umberto Bottazzini, Michele Di 
Francesco, Massimo Galuzzi and Angelo Guerraggio have been important 
in the progress of my research in several ways. I would like also to thank 
the librarians of Cambridge University Library (most notably Stephen 
Lees), the British Library (London), the Senate House Library (London), 
and the Royal Society Library (London). Thanking all these people is the 
part of my research which gives me the most satisfaction. 



OVERTURE: NEWTON'S PUBLISHED 
WORK ON THE 

CALCULUS OF FLUXIONS 

WHEN AT the beginning of the eighteenth century the Newton-Leibniz 
controversy exploded. the great majority of British scientists declared their 
loyalty to Isaac Newton. In their opinion the calculus of fluxions had been 
invented long before the differential calculus of Leibniz and had been stolen 
by the German philosopher. It was also generally maintained that 
Newton's calculus was more firmly grounded than Leibniz's: not only was 
it thought that Newton had been the first to invent the calculus. but also 
that he had laid its scientific foundation. It was not clear. however. which 
was the genuine form of the calculus of fluxions since it was difficult to 
derive a coherent idea of it from Newton's work. 

Newton's first published work on fluxions. 'De quadratura' (1704c). 
appeared in 1704 as an appendix to Opticks (I 704a). This was followed in 
1711 by the 'De analysi' (171 Ib). a tract written in c. 1668/9. I And then. 
of course. there were the Principia (1687) with their huge apparatus of 
mathematical techniques. It was not until 1736 that there appeared in 
English. with the title The Method of Fluxions and Infinite Series. the 
translation of a long and comprehensive treatise which Newton had 
composed in 167 I. 2 All the Newtonians agreed that the calculus of 
fluxions was contained in these works. However. in the Principia there was 
no proper algorithm of fluxions. even though series and some algebraical 
manipulations with 'moments' occurred. especially in the second book. 
The two treatises of 1704 and 1711 were in sharp contrast concerning the 
foundation of the calculus. since in the former Newton tried to avoid the 
use of infinitesimals. while in the latter infinitely small quantities were 
freely employed. If Newton was the true inventor of the calculus. where did 
he present the genuine form of it? 

Newton himself tried to give an answer in the anonymous 'Account' 
(1715) to the Commercium Epistolicum which appeared in the Philosophical 

1 
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Transactions for the year 1715. According to him, the whole controversy 
with Leibniz 

relates to a general Method of resolving finite Equations into infinite ones, and 
applying these Equations, both finite and infinite, to the Solution of Problems by the 
Method of Fluxions and Moments. (Newton (17 IS), p. 173) 

Newton made it clear that his theory was divided into two parts: the first 
dealt with series, while the second consisted in the application of the 
method of fluxions and moments to infinite series or to fiQite algebraical 
formulae. In fact in 'De quadratura' (1704c) he explained how the two 
parts could be used together. Given an expression in which there occurred 
the fluxions iI and x of unknown quantities, he could manipulate the 
expression in order to obtain a power series of ii/x. He was then able to 
operate on the series applying simple methods of integration and determine 
y.3 In modern terms, he integrated first order differential equations, 
expanding the derivative of the unknown function and integrating term by 
term. Indeed Newton's method allowed the integration of differential 
equations that were quite complicated for late seventeenth-century 
mathematicians. 

For instance, he considered:4 

X 1 I 4 :; -;- = _y-4y2+2yxz--X2+ 7y'+ 2y3; x(o) = 0. 
y 2 5 

His procedure can be rewritten as follows: 

Therefore, 

Substituting: 

Therefore, 

X 1 
if Y ~ 0, then -;- ~ -yo 

Y 2 

1 X = _y2_ y3, 
4 

L 1 2 
x' = -y-y + .... 

2 



Substituting: 

Therefore. 

OVERTURE 

XI 2 :; 14 2s --; = -Y- 3Y + 7YZ--Y +-Y + .... 
Y 2 20 5 

X 1 2 :; 
--; ~ - Y - 3Y + 7YZ. 
Y 2 

1 1 
X = -Y2 _Y3+2W+ .... 

4 

3 

The interest in series representations was brought about by the 
possibility of treating transcendental functions as algebraic functions. In 
fact. power series were treated as infinite polynomials: considerations on 
convergence emerged only at a very intuitive level. 

When in the 'Account' Newton came to characterize the 'method of 
fluxions and moments' he presented side by side two different explanations 
of it. In the first he used moments. 'momentaneous Increases. or infinitely 
small Parts of the Abscissa and Area. generated in Moments of Time' 
(Newton (1715). p. 178). In modern notation the moments can be 
represented as y'(t)dt. x'(t)dt. etc. Newton used yo. xo. where x and yare 
the fluxions. or instantaneous velocities. of x and Y and 0 is an infinitely 
small interval of time. Apart from their kinematical generation. Newton's 
moments are equivalent to Leibniz's differentials. Therefore in what follows 
note that the Leibnizian dx corresponds to Newton's xo. where x = dx/dt. 
and 0 is an infinitesimal interval of time dt. 

But Newton also presented another approach to the calculus and this 
was. according to him. a rigorous and genuine approach. 

When he [Newton] is demonstrating any Proposition he uses the Letter 0 for a finite 
Moment of Time. or of its Exponent. or of any Quantity flowing uniformly. and 
performs the whole Calculation by the Geometry of the Ancients in finite Figures 
or Schemes without any Approximation: and so soon as the Calculation is at an 
End. and the Equation is reduced. he supposes that the Moment 0 decreases 
in infinitum and vanishes. But when he is not demonstrating but only investiga­
ting a Proposition. for making Dispatch he supposes the Moment 0 to be infinitely 
little. and forebears to write it down. and uses all manner of Approximations 
which he conceives will produce no Error in the Conclusion. (Newton (1715). 
p. 179) 

As Bos (1974) has shown. behind these two different presentations of 
the calculus there are two different conceptions of continuous magnitude. 
Let us take for example a curve C (see fig. I) and the variables associated 
with it: the abscissa x. the ordinate y. the subtangent t. the tangent T. the 
arclength s. the area Q. the normal n. In the calculus of moments or 
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Fig. I 

differentials these continuous magnitudes can be analysed in terms of their 
infinitesimal components. s In fact, the variables are supposed to increase 
or decrease by infinitesimal steps y, y', y", etc. Therefore we can associate 
with this progression a progression of differentials defined as dy = y' - y, 
dy' = y" - y', etc. Similarly, second order differentials are defined as d2y = 
dy' - dy, d2y' = dy" - dy', etc. The required information on the curve C will 
determine how deep the analysis must be. For instance, to determine the 
subtangent it is sufficient to consider first order differentials, while to 
determine the radius of curvature it is necessary to analyse second order 
differentials. 

There are three characteristics of the calculus of moments which should 
be noted. 

(I) The arbitrariness in the choice of the progressions of the variables. In the 
analysis of the curve C it has to be established which, if any, of the 
variables satisfies the condition "'0 = constant. For instance, it can be 
assumed that so = I. In this case the curve is subdivided into equal 
infinitesimal arcs, and this partition on the curve will determine 
unequal partitions of the other variables, for instance x and y. Any 
of the variables can be supposed to be subdivided so as to satisfy the 
condition "'0 = constant, there is no variable which takes pre­
cedence. A more general view can be taken and this restrictive 
condition will not hold for any of the variables. 

(2) A variable and its differentials are dimensionally homogeneous. In fact, if, 
for instance, Q has dimension 2, do, 002

, 003
, etc. will have the same 

dimension, they will be infinitely small areas. 
(3) The Archimedean principle does not hold universally. In the calculus of 
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moments it may be possible to have two homogeneous magnitudes 
a and b, such that a < b and there is no n such that an > b. The 
magnitudes for which Archimedes's principle holds belong to the 
same class of infinity. 

In the second approach to the calculus, which we may call the calculus 
of limits, magnitudes are not analysed in terms of their infinitesimal 
components. In this case the geometrical magnitudes defined, for instance, 
by curve C in fig. I, must be considered to be in the final state of a process. 
A possible choice is to conceive this process as a kinematical one: using a 
modern terminology one might say that the magnitudes grow and decrease 
as 'functions of time'. In fact Newton called the magnitudes 'fluent 
quantities' and their rates of increase 'fluxions'. In the final state, at a 
certain determinate instant, some quantities may disappear simul­
taneously, and, as is well known, in geometry and mechanics it is 
important to establish the limit to which the ratios and sums of these 
'vanishing quantities' approach. Consequently, Newton developed an 
intuitive theory of limits: the 'method of prime and ultimate ratios'. Also 
in this second approach to the calculus a choice has to be made on the 
progression of the variables. For instance, it can be assumed that x = 
constant, or, as Newton said, 'x flows uniformly'. Again no variable must 
be privileged; there is no need to suppose that any of the variables flows 
with a constant velocity. However, characteristics (2) and (3) of the 
calculus of moments have no place in the calculus of limits: continuous 
magnitude is not analysed in terms of homogeneous components 
belonging to an inferior class of infinity. In the calculus of limits y is not 
an infinitesimal but a finite rate of change of y. 

Newton's aim in the' Account' was to defend his position against the 
Leibnizians. He tried to show that the calculus of fluxions had been 
invented in all its details (notation, methodology, theorems) before 1684 
and that it was superior to Leibniz's differential calculus. But Newton's 
presentation of the calculus changed from the 1660s to the 1690s, while 
his notation X, y, i was employed by him only in the early 1690s. In his 
early writings on the calculus, for instance in the 'De analysi' (17 II b), 
Newton's use of infinitesimals was very similar to Leibniz's differential 
calculus. Furthermore, in those early years Newton was employing a 
notation clearly inferior to Leibniz's (Newton used small a, band c to 
represent the infinitely small increments of A, B and C). These facts were 
hidden by Newton in the 'Account', which unfortunately was to be 
considered by his immediate followers, to whom the author of this 
anonymous review of the Commercium Epistolicum was not a mystery, as 
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the last word of Newton on the calculus of fluxions. As a matter of fact in 
Newton's mathematical work it is possible to distinguish four different 
alternatives. 

The propositions in the fluxional calculus could be expressed as: 

(I) using differentials as infinitely small components of finite mag­
nitudes; 

(2) using moments as infinitely small components generated by motion 
in an infinitely small interval of time; 

(3) using finite variable quantities and their rates of change; and 
(4) using flowing quantities and their velocities (or fluxions). 

In cases (I) and (2) the proofs are based on a principle of cancellation 
according to which if a is infinitely small in comparison with A, then a can 
be eliminated so that A+a = A. In cases (3) and (4) the proofs are based 
on an intuitive theory of limits. The limits are taken considering the 
quantities in the final state of a process of successive approximations (in 
(3» or in the final state of a kinematical process (in (4». Here a is finite, 
but, as the process goes on, a becomes smaller than any given difference, 
therefore in the limit A + a = A. 

In his early writings, most notably the 'De analysi' and the 'De 
methodis' (published later as (17IIb) and (1736», Newton employed the 
principle of cancellation of higher order 'differentials' (one can use here 
Leibniz's terminology since Newton's technique is equivalent to Leibniz's 
x+dx = x). Later, in the Principia (1687) and 'De quadratura' (1704C), 
Newton developed a theory of limits, which was understood by him as the 
correct foundation of the calculus, while his early differentialist methods 
were to be considered as just abbreviations. 6 It is especially in the 
preparation of 'De quadratura' (1704C), i.e. in the period 1693-1704, 
that Newton conceived the theory of limits as a means of banishing 
infinitely small quantities. As we have seen, these developments were 
hidden during the Newton-Leibniz controversy. For instance, in the 
, Account', just after a presentation of his theory of limits, as it was 
developed in 'De quadratura' (I 704c), Newton could continue by saying 
that the calculus of fluxions was superior because in it 'there is but one 
infinitely little Quantity represented by a symbol, the symbol 0'. This 
sentence could be certainly employed as a presentation of the method of 
moments developed in the 'De methodis' of 1671, but was in complete 
contradiction with the method of limits of 'De quadratura' (1704c). 
Newton left to his followers a wealth of theorems and results achieved with 
the calculus of fluxions, but he left also a rather confused presentation of 
the methods and of the concepts which had to be employed. As we will see 



OVERTURE 7 

in chapter 3. the debate on the foundations of the fluxional calculus. a 
debate which occupied eighteenth-century British mathematicians so 
much. is. to a great extent. the history of different interpretations of the 
mathematical work of Isaac Newton. 
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THE DIFFUSION OF THE CALCULUS 

(1700-30) 

A T THE beginning of the eighteenth century, Newtonian Natural Phil­
osophy began to spread all over Europe. In Great Britain an astonishing 
amount of interest was shown in the new science. A great number of 
lectures were given both in and outside London. The role of the fluxional 
calculus in this process of reinterpretation and popularization was 
negligible. Quite understandably, a technical subject did not attract the 
audiences who gathered to attend the lectures on Natural Philosophy. 

However, a group of' philomaths' was already active in the seventeenth 
century. They were most likely interested in Newton's mathematical 
theory; and, when properly instructed, they were probably able to develop 
the calculus of fluxions. But in the later years of the seventeenth century 
the Newtonian calculus could only have been known to Newton's 
correspondents, such as Collins, Oldenburg and Wallis. Manuscript copies 
of parts of Newton's work on fluxions were in circulation. The few who 
were allowed to glance at them, such as Craige, Fatio and David Gregory, 
were able to grasp just a fraction of Newton's achievements. 

Needless to say, the first persons to try and systematize this information 
in the form of a treatise had to use as their sources the Acta Eruditorum and 
L'Hospital's Analyse (1696). Particularly remarkable were the attempts of 
Cheyne (1703) and Hayes lI704). 

In later years the calculus enjoyed a time of great popularity thanks to 
the priority controversy with Leibniz. I will not even try to retell the story 
of this famous dispute, which has already been described in all its details 
and implications by Hofmann (1943), Fleckenstein (1956), Whiteside in 
Newton (1967-81), VIII, Scriba (1969), and Hall (1980). What concerns 
us is the fact that the quarrel with the Leibnizians caused the publication 
of Newton's mathematical tracts (171 la) and of parts of his mathematical 
correspondence as Collins (1713). Newton's countryfellows were able to 
read and digest the lesson. I 

II 
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This lesson, however, arrived late in the universities. In Oxford the 
splendid group formed by Gregory, Keill. Halley and Bradley did very little 
to promote the study of mathematics. In Cambridge, on the other hand, we 
find Saunderson teaching fluxions as fourth Lucasian Professor. Glasgow 
with Simson and Edinburgh with Maclaurin also played an important role 
in the diffusion of fluxions in the British universities. 

I. I Early initiates 

The beginnings of the diffusion of the fluxional calculus are even more 
uncertain and confused in comparison with the diffusion of Newton's 
theory of gravitation and his optics. This was due mainly to the well­
known reluctance of Newton to publish his mathematical work: only his 
few acquaintances and correspondents, such as Wallis, Oldenburg and 
Collins, were initiated into the calculus of fluxions. In fact Patio de Duillier 
(1664-1753), John Craige (d.1731) and David Gregory (1659-17°8), the 
first persons to try and develop the calculus of fluxions, had to consult 
Newton personally on his not yet published 'new analysis'. 

Patio was for a period one of Newton's proteges and was allowed, in the 
winter of 1691-2, to read parts of the preparatory manuscripts of 'De 
quadratura' (1704C). Not at all a mediocre mathematician, Patio is the 
author of Lineae Brevissimi Descensus Investigatio Geometrica (1699) in 
which he presents his own solution of the well-known brachistocrone 
problem. However, his work is more famous for having opened the priority 
controversy by stating, clearly and for the first time, that Leibniz had 
plagiarized Newton's calculus. 

John Craig(e), a Scot who resided for some time in Cambridge, also 
enjoyed a privileged relationship with Newton. He was able to study in 
1685 parts of the 'De analysi' and of the 'De methodis' (which were later 
published as Newton (171 Ib) and Newton (1736». Craig(e) published in 
(1685) the first British work on quadratures: the Methodus Figurarum 
Lineis Rectis & Curvis Comprehensarum Quadraturas Determinandi. It is ironic 
that this work and his subsequent Tractatus Mathematicus de Figurarum 
Curvilinearum Quadraturis et Locis Geometricis (1693) were written in 
differential notation. In these years prior to 1704, Newton was able to act 
as a personal gUide for the few lucky ones, but the published sources for 
the early British 'fluxionists' were the Acta Eruditorum and, from 1696, 
L'Hospital's Analyse des Infiniments Petits (1696). In fact all Craig(e)'s 
mathematical work is fully within the tradition of the Leibnizian calculus. 
He described his first work in the Philosophical Transactions for the year 
1686 as independent from Newton's. He mentioned the researches of 
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Descartes, Fermat, Sluse, Barrow, Wallis, Tschirnaus and Leibniz, but 
added: 

none has attempted to invert this problem generally, that is, having the Tangent 
to find the Curve Line whose Tangent it is. (Craig(e) (1688a). p. 18S) 

SO Craig(e) considered his (1685) as the first work on integration. After 
reading Leibniz's 'Nova method us , (1684), he tried to reformulate in 
differential notation some theorems of Barrow on integration by 
substitution of variables. His idea consisted in expressing the change of 
variable as a multinomial with undetermined coefficients. 

The case of David Gregory illustrates very well how difficult it was in this 
period to obtain information on the calculus of fluxions. 2 He was the first 
person to try and write, between 1694 and 1695, a small tract on fluxions. 
He was able to base his work on the few pages of John Wallis (1693), pp. 
390-6, in which passages of Newton's manuscript 'De quadratura' were 
included. 3 He also had a manuscript copy, taken in 1685 by Craige, of the 
first parts of Newton's' De method is , which do not deal with fluxions but 
with series.4 Further information could be gained only by visiting Newton 
and displaying due deference. In May 1694 Gregory went to Cambridge 
and was allowed by Newton to take copies of the' truncated' version of' De 
quadratura '. Halley was more fortunate and was able to take the 
manuscript itself to London. Examples of application of the calculus were 
to be found later in the Philosophical Transactions,S but a comprehensive 
exposition of the calculus of fluxions was still lacking. 

1.2 Textbook writers 

We can consider John Harris's New Short Treatise of Algebra (1702) as the 
first published introductory presentation of the calculus of fluxions. Harris 
wrote: 

There being nothing published on this Subject [the calculus of fluxions] in our own 
language. and yet the vast use of this Method of Investigation being as conspicuous. 
as it is wonderful: I thought it proper to give a short account of it here. (Harris 
(1702), 2nd edn .. p. 133) 

Harris devoted only twenty pages of his Algebra to fluxions and (in the 
second edition of 1705) he referred the enthusiast to the following texts: 

he [the reader] will find sufficient Satisfaction, by perusing the Authors above 
mentioned: vz Newton, Wallis. Niewentiit, Carre. Leibnitz (in the Act.Eru­
ditor.Lipsiae) and especially the Marquis L'Hospital. his excellent Analyse des 
Infiniment Petits. (Harris (1702). 2nd edn., p. 149)6 
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John Harris (1666-1719) was one of the most influential mathematics 
teachers in London, and one of the first to adopt Newton's natural 
philosophy. He was elected Fellow of the Royal Society in 1696, and for a 
short period (1709-10) he was Secretary, but he suffered Hans Sloane's 
opposition. In 1698 he delivered the Boyle lectures in St Paul's Cathedral. 
As a teacher, Harris was never connected with any institution: in around 
1698 he began to give free public lectures on mathematics at the Marine 
Coffee-House in Birchin Lane. We read in a note' To the Reader' in Harris's 
Algebra: 

This small tract of that Admirable Science, Algebra. was written primarily for the 
Use of my Auditors at the Publick Mathematick Lecture. which was set up at the 
Marine Coffee-House in Birchin-Lane. inti rely for the Pub lick Good. by the 
Generous Charles Cox, Esq.; Member of Parliament for the Burgh of Southwark. 
(Harris (1702), 2nd edn.) 

Harris's most successful work was the Lexicon Technicum (1704. 1710) a 
huge scientific dictionary in two volumes. Harris's dictionary rendered 
obsolete Joseph Raphson's Mathematical Dictionary (1702) which was 
derived from Ozanam's Dictionnaire Mathematique (1691). Harris's work 
included articles on series, algebraic equations, trigonometry and conics. 
For our purpose it is important to note that in the second volume (1710) 
there was an English translation of Newton's De quadratura (I 704C) under 
the title • Quadrature of curves'. However, as we will see in chapter 3. 
Harris did not feel the need to reconcile it with the article' Fluxions' in the 
first volume which was based on completely different principles. 

Another complete work on mathematics which included a treatment of 
fluxions was Synopsis Palmariorum Matheseos (Jones, 1706). The author, 
William Jones (1675-1749). was a friend of John Harris, probably one of 
his pupils. He also established himself as a teacher of mathematics. Jones 
was tutor to George Parker (later second Earl of Macclesfield and President 
of the Royal Society). He is also well known as the editor of Newton's 
Analysis per Quantitatum, Series, Fluxiones, ac Differentias (nIla) and as a 
member of the committee established to decide on the Newton-Leibniz 
controversy. He was elected Fellow of the Royal Society in 171 I, and later 
became Vice-President. Even though Jones's Synopsis (1706) went through 
only one edition it was very well known and often cited.7 It was an 
advanced textbook which covered arithmetic and algebra in the first part. 
and in the second (' containing the principles of Geometry') conic sections. 
plane and spheric trigonometry. mechanics and optics. Only a-few pages 
were strictly devoted to the calculus of fluxions: Jones presented Newton's 
notation, gave the rules of differentiation of the elementary functions and 
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applied the 'inverse method' to power series. More interesting was the 
section dealing with mechanics where Jones treated some propositions of 
the Principia. It was probably this section that rendered Jones's Synopsis so 
useful at the beginning of the century, in a period in which Newton's 
major work was hard to understand even for the best mathematicians. 

The iatro-mechanist8 George Cheyne lI67I-I743) tried with his 
Fluxionum Methodus Inversa (1703) to write a treatise completely devoted 
to the fluxional calculus, which, as we have seen. was at that time still 
lacking. Even though he was not a mathematician, he was induced to 
attempt this task by his protector, Archibald Pitcairne. The results was, as 
an expert judge like Whiteside puts it, 

a competent and comprehensive survey of recent developments in the field of 
'inverse fluxions' not merely in Britain. at the hands of Newton. David Gregory 
and John Craige. but also by Leibniz and Johann Bernoulli on the Continent, and 
drew the assemblage together and systematized it with proofs and elaborations of 
Cheyne's own contrivance (Newton (1967-81). VIII. pp. 17-18). 

This work was, however, to arouse the anger of Newton who felt, without 
any justification it would seem. the threat of being plagiarized by a man of 
so little mathematical skill. Abraham de Moivre was instructed to attack 
Cheyne, and he did so with vehemence in his Animadversiones in D. Georgii 
Cheynaei Tractatum de Fluxionum Methodo Inversa (I704b).9 In the 
meantime Newton felt that it was time to publish his treatise on 
quadratures written in 1693; he appended it with the title 'Tractatus de 
quadratura curvarum' (I704c) to the Opticks (I704a). The harsh 
reception of Cheyne's work certainly damaged its popularity. Furthermore, 
it was written in a somewhat confused style. As a result, it exerted a 
minimal influence on the British calculus. But other works were about to 
appear which could meet the increasing demand for information on the 
'new analysis' of Newton. 

These were Hayes's Treatise of Fluxions (1704) and Ditton's Institution of 
Fluxions (I 706). The aim of Hayes and Ditton was clearly to write treatises 
to be used as introductions accessible to readers who were unacquainted 
with the calculus. For instance, Hayes wrote: 

As to the ensuing Treatise, the Author has been assur'd that there are in England 
as many Lovers of the Mathematicks as in any part of the World; that multitudes 
of excellent Judgements and natural Parts, merely for want of a competent 
Knowledge in other Languages. have hitherto been deprived of the Opportunities 
of improving them. to the great disadvantage of the most Flourishing Island in the 
World; that in other Nations the best pieces of Learning are written in their own 
mother Tongues. for the good of their Country which we seem purposely to slight. 
seeking a little empty applause by writing in a Language not easily attain'd. as if 
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the Knowledge of things and words had a necessary dependance on each other; and 
in a word. that such a Treatise was wanting in the English Tongue, as should 
contain a full and plain account of the best Methods, the most celebrated 
Geometers of our Age have made use of in their wonderfull Discoveries; and which 
would put it in the Power of every industrious Person to make use of those parts 
which God and Nature has bestow'd upon him to the best purposes: These, he says, 
were the principal motives that induced him to this difficult undertaking, and he 
hopes the sincerity of his design will at least merit favourable Censure from the 
World. He knows there are persons better qualified for such an undertaking, but 
none appearing, hopes his forwardness to serve the Publick will be no objection 
against him. (Hayes (1704), from the first page of the 'Preface to the Reader')10 

Charles Hayes (1678-1760) was not a teacher of mathematics. However, 
he had a good knowledge of mathematics as he is described as expert in 
geography and cartography: it is probably because of his skill in these 
fields that he was chosen to be deputy governor of the Royal African 
Company. Hayes (1704) was an outstanding achievement for a self-taught 
man. In the Preface he writes that he asked the advice of John Harris. but 
he clearly outdid his supervisor. Hayes's treatise covered in more than 300 
pages all the known areas of the early eighteenth-century calculus: from 
the brachistocrone and the study of radii of curvature to the quadrature of 
'mechanical' curves. But this treatise was published just before Newton's 
masterpiece (1704C), which certainly nullified the usefulness of Hayes's 
laudable effort. 

Humphry Ditton (1675-1715), a teacher of mathematics in London, 
was appointed. through Newton's influence, Master of a New Mathematical 
School at Christ's Hospital. I I His Institution 0/ Fluxions (1706) was more 
detailed and accurate on foundations but less advanced in contents than 
Hayes (1704). Ditton's treatise was not written specifically for Christ's 
Hospital since only 'forty poore boys' received an education in the 
mathematical school. We must assume, therefore, that Ditton too wrote in 
order to meet the demand from the many 'lovers of mathematics' . 

Other publications on fluxions were the Commercium Epistolicum (Collins 
(1713)) and Joseph Raphson's History o/Fluxions (1715). The primary aim 
of these works was to establish Newton's priority in the invention of the 
calculus. and indeed they cannot be defined as textbooks (see note 1 of this 
chapter). However, some information on the calculus could be derived 
from them. The former (Collins (1713)) was a result of the Committee of 
the Royal Society set up to decide on the Newton-Leibniz controversy and 
most notably included the two famous 1676 epistolae of Newton to Leibniz 
and Newton's 'De analysi' (I 71 1 b). The latter consisted of a rather 
confused series of quotations from Leibniz's 'Nova methodus' (1684). 
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Newton's 'De quadratura' (1704c), Cheyne's Fluxionum Methodus Inversa 
(1703), and Craig(e)'s paper (1698a). 

It seems that in the first three decades of the century there was a very 
limited market for treatises on the calculus of fluxions. Hayes (1704) ran 
only one edition, while Ditton was republished in 1726. Newton's 
collection of mathematical tracts (17IIa) clearly exhausted the demand. 
We have to wait twenty-four years for another introductory textbook on 
fluxions, Stone's The Method of Fluxions (1730). On the other hand, in this 
period a great number of popular introductions to Newton's astronomy, 
mechanics and optics were published. In these works experiments rather 
than mathematical proofs were dominant. As we will see in chapter 4, 
treatises on the fluxional calculus began to flourish in the late 1730S. 

Edmund Stone (1695-1768) was another writer of mathematical texts 
who, like Hayes, had no connection with any educational institution. He 
was the son of a gardener of John Campbell, second Duke of Argyll at 
Inverary. Stone published in (1726) A New Mathematical Dictionary, a 
shorter and less expensive alternative to Harris (17°4, 1710). But his most 
substantial work was The Method of Fluxions (1730) published in two 
volumes in 1730. I2 

The first volume consisted of a translation of L'Hospital's Analyse des 
Infiniment Petits (1696) in which Stone simply put in Newton's dots in 
place of Leibniz's d's. Since L'Hospital had confined his treatise to the 
differential calculus, in the second volume Stone provided a treatment of 
the integral calculus (or, better, of the 'inverse method of fluxions '). In 
1735 Stone's second volume was translated into French. Stone (1730) is 
clearly different from Hayes (1704) and Ditton (1706). Hayes (17°4), 
which is the more complete, after a very short presentation of the rules of 
the' Algorithm or Arithmetic of Fluxions' immediately moves on to show 
in the following 300 pages the application of the calculus to a variety of 
geometrical and mechanical problems (finding tangents, areas, maxima 
and minima, caustics, centres of gravity, percussion and oscillation, plus 
a treatment of central forces). 13 Furthermore, even though there were quite 
a lot of examples of applications of the 'inverse method of fluxions', the 
mathematical treatment of the rules of integration was almost entirely 
absent. By translating L'Hospital's Analyse des Infiniment Petits (1696), 
Stone offered to the English reader a systematic and much more analytic 
treatise on the direct method, with applications only to geometric 
problems: it was not, like Hayes (1704) and Ditton (1706), a collection of 
problems with their solutions, but a methodic treatise which included only 
a few problems and considered them at a quite advanced level (for instance 
sections VI and VII on caustics). The second volume is not a masterpiece, 
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but it has the merit of including some tables of integrals (' forms of fluents ') 
taken from Cotes's Harmonia Mensurarum (1722). However, it does not 
seem that Stone (1730) enjoyed great popularity since it was superseded 
by a number of more up-to-date textbooks published in the 1730S and 
I 740s. Furthermore. the well-known Analyst's controversy provoked by 
Berkeley (1734) rendered the community of British mathematicians too 
sensitive to the problem of foundations for them to accept the strictly 
infinitesimalist treatise of L'Hospital. 

1.3 The teaching of the calculus in the universities 

The paucity of treatises on fluxions published in the first three decades of 
the eighteenth century is certainly the result of the predictable difficulties 
that even the most enthusiastic 'learned men' found in approaching the 
new analysis. However. the few Newtonians who acted on behalf of 
Isaac Newton in the universities of England and Scotland might have been 
interested in promoting the study of fluxions to a small audience: so small 
as not to justify the cost of a publication. We should note here that in the 
universities public lectures were given, open not only to the young 
(sometimes twelve years old) students or to members of the university, but 
also to groups of adults interested in science. This is true of Keill's, 
Gregory's and Bradley's lectures in Oxford. as well as Cotes's, Whiston's 
and Saunderson's lectures in Cambridge. A closer look at the lectures 
on mathematics, natural philosophy and astronomy in vogue in the 
universities and at some minor sources will give us further information on 
the place occupied by the calculus of fluxions in the diffusion of Newtonian 
science in the early eighteenth century. 

It must be stated at the outset that our knowledge of what was really 
taught in a course of lectures and of what was really read in a treatise is 
based on quite uncertain data. Sometimes it is even difficult to understand 
whether lectures were given at all. In fact. we have to distinguish between 
the evident intentions of the writer or lecturer and the more hidden 
motivations of his listeners and readers. The historian here has to face the 
embarrassing truths that not all the subscribers were enthusiastic readers 
and that they had different motivations (they were friends of the author. 
they shared his political views. they followed a fashion. etc.): that not all 
the deposited lectures were actually read and that very often a writer of an 
introductory text or a teacher addressed himself to a public (e.g. the 'many 
lovers of science ') which might not exist. 

David Gregory's legenda for his students at Oxford, which are quoted in 
Eagles (1977a). pp. 134-41, are certainly unrealistic. I4 Gregory. who was 
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Savilian Professor of Astronomy at Oxford from 169 1/2 to 1708, included 
in the curriculum studiorum Euclid's Elements, Apollonius's De Sectione 
Coni, Serenus's De Sectione Cilindri, Newton's Principia, Kepler's Mysterium 
Cosmographicum, Harmonicae Mundi and Astronomia Nova, and Wallis's 
Arithmetica Infinitorum. It is quite certain that such a course was never 
followed since it is very well documented that the level of studies in English 
universities was then very low. 

However, Gregory gave some place in his teaching to Newtonian 
philosophy both in Edinburgh, where he held the Chair of Mathematics 
from 1683 to 1691, and in Oxford where, as we already know, he wrote 
a tract on fluxions probably for the use of his (better!) students. John Keill 
(1671-1721), a friend of Gregory, arrived from Scotland in 1694 and 
began to lecture on Newtonian philosophy. In 1699 he was employed by 
Thomas Millington as deputy Professor of Natural Philosophy. His course 
was published as Keill lI702). From 1709 to 1712 Keill was in New 
England. His lectures were continued by John T. Desaguliers (1683-1744). 
In 1712 Keill was elected Savilian Professor of Astronomy and lectured 
regularly till his death. When Gregory and Keill began their campaign in 
favour of the establishment of Newton's philosophy in Oxford, they found 
the Savilian Chair of Geometry still occupied by John Wallis (1616-17°3) 
who was succeeded in 1703 by Edmond Halley (1656-1742). Conse­
quently Oxford became a very interesting centre of diffusion for 
Newtonianism. Halley, James Bradley (1693-1762) and Nathaniel Bliss 
(1700-64), Astronomer Royals, respectively, from 1720 to 1742, from 
1742 to 1762 and from 1762 to 1764, all held one of the Savilian Chairs. 
However, even though Gregory, Keill, Halley and Bradley were very well 
qualified in teaching the calculus of fluxions, there is little evidence that 
they actually did so. 

The manuscript lectures of Gregory do not supply more than a few 
lectures a year, despite the fact that they cover mechanics, hydrostatics, 
optics and astronomy (see Eagles lI977a), p. 100). Mathematics is not 
touched on in these few extant examples, but Gregory's small tract on 
fluxions, and especially his treatise on geometry, which was published 
posthumously as (1745), provide sufficient proof that Gregory was 
interested in teaching the calculus. Eagles, who has analysed Gregory's 
published and unpublished work in (1977a), draws the conclusion that in 
his lectures he stressed the utilitarian goals of mathematics: a conclusion 
which seems plausible if one considers the style of Gregory (1745). 

The best source on Newtonianism in early eighteenth-century Oxford 
are Keill's lectures published as Introductio ad Veram Physicam (1702) and 
as Introductio ad Veram Astronomiam (1718). These lectures were also 
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widely diffused outside Oxford: they were translated into English and 
served as a model for many other treatises on natural philosophy and 
astronomy. However, the reader will find in Keill's exposition views very 
far from anything that Newton had ever written: for instance, on the 
nature of matter or on the force of gravitation. In fact early Newtonians, 
such as Roger Cotes (1682-1716), William Whiston (1667-1752) and 
Keill. offered global reinterpretations of the Principia which very often went 
far from the intentions of Newton. 

We will not be surprised, then, to find in Keill's lectures a relationship 
between mathematics and physics which was never envisaged by Newton. 
Keill argued in favour of the infinite divisibility of matter by 'Arguments 
taken from Geometry' (Keill (1720), p. 21). He tried to 'demonstrate that 
all Extension, whether corporeal or incorporeal, was divisible in infinitum, 
or had an infinite Number of Parts' (Keill (1720), p. 26). Keill did not 
explicitly distinguish between 'geometry' and 'physics' and interpreted 
the Euclidean proofs on the infinite divisibility of magnitude as applicable 
to the analysis of the structure of matter. If we can conceive geometrical 
magnitudes as well as matter as composed of an infinity of infinitely little 
parts, we can proceed to infinitesimals of the second order. It is here that 
Keill introduces the term 'fluxio' for the first time in this series of lectures: 

since they [the infinitely small parts] are extended, they will be also divisible; 
not only in two or three, or more Parts, but likewise every one may be divided 
in infinitum. The infinite Number of Parts of an infinitely small Quantity, are 
wont to be called by the Geometers, Infinitesimals of Infinitesimals, or Fluxions of 
Fluxions. (Keill (1720), p. 40) 

In order to prove the' existence' of different orders of infinitesimals, Keill 
employed the reasonings on angles of contact which could be found in the 
final scholium of section I of Newton's Principia (Keill (1720), pp. 43-5). 
It is interesting to note that the Newtonian calculus appeared, even 
though in a very strange form, not in Keill's treatment of mechanics or 
astronomy but in his considerations on matter theory. 

Even though Keill was one of the most vehement defenders of Newton 
in the priority dispute with Leibniz on the invention of the calculus, it 
seems that he did little to promote the application and the development of 
the calculus of fluxions. Indeed mathematical methods were employed in 
some of his lectures (e.g. the Lectio XV of his (1720) on the motion on 
inclined planes and pendulums, and the Lectiones XXIV and XXV of his 
(1718) on Kepler's problem), but generally Keill preferred to tackle 
astronomical and mechanical problems by using the geometry of the 
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Principia. In other cases Keill did not even attempt to give a mathematical 
proof for every proposition, but rather he described the Universe discovered 
by Newton and gave a qualitative account of how the force of gravitation 
could explain the motion of the planets. 

This lack of application of the calculus of fluxions to astronomy and 
mechanics is typical of the first generation of Newtonians. Despite the fact 
that in L'Hospital (1696), p. xiv, Newton's Principia was stated to be 'all 
about the calculus', and that Newton in the' Account to the Commercium 
Epistolicum' (1715), p. 206, had affirmed that all the propositions of the 
Principia were demonstrated by his 'new analysis', it was not so easy to 
translate Newton's geometrical proofs into his fluxional calculus. The 
difficulties Leibniz and Varignon found in giving an analytic form to 
dynamics testify well to the fact that their effort was not trivial. 

Little is known of Halley's activity as a teacher, while Bradley, Savilian 
Professor of Astronomy from 1721 to 1762, is described by Hans (1951), 
p. 48, and Turner (1986), p. 673, as lecturing regularly in the Ashmolean 
Museum. He was also lecturer on experimental philosophy in Christ 
Church. However, on his election in 1742 as Astronomer Royal, he had to 
leave Oxford. Bradley's lectures, as well as the preparatory sheets that he 
wrote for his own use, are still extant. IS It appears that they were written 
well after the period considered in this chapter, i.e. in between 1758 and 
1761. It will suffice here to say that Bradley's' extant lectures cover 
schoolroom algebra up to logarithms and plane trigonometry. Another set 
of lectures includes matter theory (phenomena of cohesion and repulsion 
of particles), the first three laws of mechanics, motion on inclined planes, 
pendulums, central forces, elements of geometric optics, hydrostatics and 
pneumatics. Bradley copied a great part of his lectures from Rutherforth's 
System of Natural Philosophy (1748) and Emerson's Principles of Mechanics 
(1754), and he performed the experiments of Whiston and Hauksbee and 
derived the description of the necessary instruments from Desaguliers. 
From the preparatory notes of his lectures we gather that he intended to 
dedicate a few days to the calculus of fluxions. But, instead of referring his 
students to a treatise on fluxions, he chose a few examples taken from 
Miscellanea Curiosa Mathematica, a collection of short essays on math­
ematics edited by Francis Holliday (1745-53), in which one could find a 
translation of parts of Taylor's Methodus Incrementorum (1715). John Keill, 
James Bradley, Thomas Hornsby (their successor on the Savilian Chair of 
Astronomy), and John Whiteside (1679-1729), scientific lecturer at Christ 
Church and keeper of the Ashmolean Museum, gave lectures on natural 
philosophy (mechanics, hydrostatics, pneumatics, astronomy), but not on 
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mathematics. As will be seen later, in the 1750S and 1760s the calculus 
of fluxions was studied in much more detail in Cambridge: it seems 
therefore that the grandiose projects of Gregory were never achieved. 16 

The position of Keill in Oxford resembles that of William Whiston 
(1667-1752) in Cambridge. 17 Whiston, in his Praelectiones Astronomicae 

(1707) and Praelectiones Physico-Mathematicae (1710), collected the 
lectures he gave as successor of Newton in the Lucasian Chair. In these 
works the importance of a mathematical treatment of planetary motions 
and geodesy (the shape of the Earth) is particularly stressed. However, 
Whiston did not attempt to employ the calculus and strictly adhered to the 
Principia: he reproduced the main propositions of Newton's masterpiece 
(and of the Opticks) and added his explanations. So the required 
mathematics is premised in the first three lectures and consists in the basic 
properties of the conic sections. In fact the Praelectiones Physico­

Mathematicae are the first published extensive commentary of the Principia. 

It is not known if Whiston ever attempted a similar work with Newton's 
. De quadratura " but this hypothesis seems very unlikely. 

While we do not know anything about Cotes's and Whiston's teaching 
of the calculus, their activity as lecturers in experimental philosophy is 
very well documented. Since 1707 Whiston collaborated with Roger 
Cotes, Plumian Professor of Astronomy, in lecturing on experimental 
philosophy. Cotes's Hydrostatical and Pneumatical Lectures (1738) were 
published posthumously. It is known that Whiston, after having been 
deprived of his Chair because of his Arian heresy, moved to London, where 
he performed experiments with Francis Hauksbee (1687-1763) the 
younger. The lectures of Cotes, Hauksbee and Whiston are merely an 
example of the many courses on experimental philosophy which were 
given in that period. The number and success of lectures of this kind are 
easily explained by the fact that Newtonianism was more easily 
understandable, more attractive and spectacular when it took the form of 
an experimental course. \yas, then, the teaching of the calculus of fluxions 
completely absent from Cambridge? 

We can derive some information from two famous outlines of courses 
written in 1706 and in 1707.18 The first one is the Advice to a Young 

Student (1730) by the theologian Daniel Waterland (1683 - 1740) of 
Magdalene. For our purpose it is interesting to note that Waterland 
included Well's' Arithmetic, Geography and Astronomy, Euclid's Elements, T. 
Newton's Trigonometry, de La Hire's Conic Sections, Whiston's Praelectiones 

Astronomicae and Praelectiones Physico-Mathematicae, Keill's Introductio ad 

Veram Physicam, Rohault's Physics, Newton's Opticks and Gregory's 
Astronomiae Physicae & Geometricae Elementa'. As further reading for those 
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preparing for an M.A., Waterland added' Ozanam's Curs us Mathematicus, 
Huygens's Works, Molineaux's Dioptrica, Harris's Lexicon and Newton's 
Principia'. As in the case of Gregory we do not have to take very seriously 
this full-time curriculum, but we have good reasons to think that at least 
some of the students found this guide useful. Indeed Waterland's Advice 
circulated in manuscript form was published in 1730 and was republished 
several times during the eighteenth century. But even though Waterland's 
Advice was the guide for the best students, we must still conclude that 
fluxions were almost absent from teaching at Cambridge. 

However, the second guide we are considering here. Robert Greene's 
ErKIKAonAI~EIA (1707). includes for the fourth year the study of 
'fluxions and infinite series'. The authors to be consulted in this case are: 
Wallis. Newton, Raphson. Hayes. Ditton. Jones. Nieuwentijdt and 
L'Hospital. Robert Greene (1678-1736) was a fellow of Clare who 
distinguished himself as an anti-Cartesian. an anti-Newtonian and as a 
convinced supporter of a 'Greenian Philosophy'. Even though he was 
anything but a 'typical' figure his gUide has to be taken into account. It 
is interesting. for instance. to find Nieuwentijdt and L'Hospital quoted 
again by a British author: Dutch and French mathematicians are very 
often quoted in early eighteenth-century Great Britain. Furthermore we 
find references to Hayes (1704). Ditton (1706) and Jones (1706). 

Cotes died in 1716 and Whiston was expelled from Cambridge in 1710. 
Their successors. Robert Smith (1689-1768). Plum ian Professor from 
1716 to 1760. and Nicholas Saunderson (1682-1739), Lucasian 
Professor from 1711 to 1739. played an important role in establishing the 
study of mathematics in Cambridge. 19 

Nicholas Saunderson was blind from the age of twelve months as a 
consequence of smallpox. He was educated at the Attercliffe Academy. one 
of the most famous dissenting academies. where. it seems. he was not 
taught mathematics. But he found somebody who read him science books 
and. writing formulae and figures with pins on a wooden board. he 
acquired a deep knowledge of mathematics. He arrived at Cambridge in 
1707 and began lecturing as a private tutor. Then in 1711, on the 
removal of Whiston. he was elected Lucasian Professor. A former student 
of his informs us that: 
His Lecture, as soon as opened, was attended by many from several of the Colleges, 
and in some time was so crowded, that he could hardly divide the Day among all 
who were desirous of his Instructions. (Davies (1740), p. v) 

We every Year heard the Theory of the Tydes, the Phaenomena of the Rainbow, 
the Motions of the whole Planetary System as upheld by Gravity, very well 
defended by such as had profited of his lectures. (Davies (1740), p. vi) 
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Students' copies of these lectures are still extant. 20 It appears that 
Saunderson. as was usual. lectured on a wide range of topics. i.e. 
mechanics. optics. hydrostatics. acoustics and astronomy. Here Saun­
derson did not add very much to Keill (1702) and (1718). Whiston 
(1710) and Worster (1722). the texts which he often quoted and even 
simplified in order to render his lectures accessible to innumerate students. 
However. Saunderson also lectured on mathematics. and probably because 
of his blindness he preferred analytical to geometrical methods. 

His bias for analysis seems to have been particularly strong since it 
caused. as James Wilson (1690-1771) remembers. quarrels between 
Saunderson's and Benjamin Robins's students: 

Amongst Mr. Robins's scholars. such as went afterwards to Cambridge. in order to 
qualify themselves for one of the learned professions. were wont. as in the custom 
of young men. frequently to enter into warm contests with the disciples of Mr. Prof. 
Saunderson. that gentleman using there a very different method of instruction. 
And indeed I have met with ingenious persons. who. though they allowed Euclid's 
Elements to be the perfectest book of the kind; yet did not think it the most proper 
introduction for the Generality of Students. at least when ranged into classes. the 
way of teaching principally followed in universities; but the contrary of this 
opinion appears to be true from the constant and very successful practice of the late 
famous Mr. Maclaurin. who. I observed with pleasure. always begun his academical 
courses with the Elements of Euclide. (Robins (176 I). p. ix) 

Saunderson lectured on algebra and fluxions. His Elements of Algebra and 
Methods of Fluxions were published posthumously in 1740 and 17S6. 
respectively. 

The Method of Fluxions (17s6a) can be divided into three parts. 21 The 
first is an introduction to the calculus of fluxions. The second treats Cotes's 
integrals. The third (in Latin) is devoted to the analysis of some propositions 
of the Principia. The first part probably covers the contents of the course on 
fluxions given by Saunderson. The students would have been introduced 
to the calculus of fluxions at quite an advanced level. In addition to the 
topics covered by Hayes. Saunderson includes an interesting chapter on 
the attraction of spheroids which is an analytic treatment both of 
Newton's and Cotes's geometrical solutions. The a!1alytical bias of 
Saunderson is particularly evident in the second part devoted to Cotes's 
'Logometria' (I7 I7). Although Cotes had given geometrical proofs. it 
appears that he used a table of eighteenth integrals which was published 
in Harmonia Mensurarum (1722).22 Saunderson showed how Cotes's in­
tegrals could be derived one from the other and applied them to the sol­
ution of the propositions of the Scholium Generale of Cotes's 'Logometria·. 
The Method of Fluxions ends with a commentary of the Principia where he 
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preserves Newton's geometrical methods. It is interesting that Saunderson 
does not confine his commentary to the first three sections of Sook I. which 
would have been sufficient for an introduction to the mathematical 
treatment of gravity, but presents proofs of more advanced parts (for 
instance Prop. 66 and some of its corollaries). It seems that Saunderson 
was the first in Cambridge to lecture systematically on the calculus of 
fluxions. 23 The teaching of the calculus did not vanish after Saunderson. 
On the contrary, as we will see, in the 1 740s, with the beginning of the 
Tripos Exam, exercises on fluxions became a routine for Cambridge 
students. 

It seems likely that courses on the calculus of fluxions were given in 
Glasgow by Robert Simson (1687-1768), Professor of Mathematics from 
1711 to 1761, and in Edinburgh by James Gregory (1666-1742?), who 
succeeded his brother David in 1692, and by Colin Maclaurin 
(1692-1746), who taught in Edinburgh from 1725 until 1746.24 

Simson had as his pupils several mathematicians, most notably Colin 
Maclaurin (1698-1746), Matthew Stewart (1717-85), John Robison 
(1739-1805), James Williamson (d.1795) and William Trail (d.1831), 
who all held Chairs in the Scottish universities. He passionately advocated 
the use of geometrical methods. Trail remembers Simson's attitude 
towards the teaching of conic sections: 

He had observed, in the first years of his study of Mathematics, that the treatises 
on Conic Sections, then in most general use and estimation, were entirely 
algebraical; and the great merit of the work, written in that stile by the Marquis 
De L'Hospital, contributed not a little to the popularity of this mode of treating 
geometrical subjects. It occurred therefore to Mr. Simson, that a Treatise on Conic 
Sections, written on the purer model of antiquity, might have some influence in 
correcting the prevailing false taste, of introducing algebraical calculation into 
those branches of geometry where it was not necessary, and where it supplanted 
a more elegant form of analysis and demonstration. (Trail (1812), p. 27) 

Simson concerned himself with the restoration of Euclid's Porisms and 
with the edition of Euclid's Elements (1756): two tasks which occupied his 
entire life. However, we find him writing to Jurin (on 1 February 1732) 
about a series for the quadrature of the circle.25 Furthermore, he left an 
incomplete tract, De Limitibus Quantitatum et Rationum (in Simson (1776), 
pp. 89-110), in which he tried to reformulate Newton's theory of prime 
and ultimate ratios within his preferred framework, i.e. he interpreted 
Newton's method as an abbreviated form of the indirect ad absurdum proofs 
of the method of exhaustion. Did Simson in his lectures on the Principia 
translate Newton's limit processes into an Archimedean framework? If so, 
in Glasgow the Principia would have been read as a Greek classic. 
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Even though Simson communicated his enthusiasm for geometry to 
Colin Maclaurin, it seems that his most famous pupil did not entirely agree 
with him. We know from James Wilson that Maclaurin always began his 
courses' with the Elements of Euclide' (Robins (1761), p. ix). But we have 
reason to think that he soon left ancient geometry to teach his students 
something quite new. The plan of Maclaurin's Treatise of Fluxions (1742) 
reveals his intention to lead the reader from the first chapters concerned 
with the method of exhaustion to the second book which is completely 
analytical. He might have followed the same route in his courses. The 
doubtful nature of this conclusion must be stressed since the Treatise of 
Fluxions is too complex in structure and too advanced in content to be 
taken as representative of the teaching in Edinburgh. 

It is interesting to see how John Playfair (1748-1819) in his biography 
(I 788a) of Stewart, writing more than forty years after Maclaurin's death, 
contrasts Maclaurin's with Matthew Stewart's methodology: 

Mr. Stewart's views made it necessary for him to attend the lectures in the 
University of Edinburgh in 174 I ; and that his mathematical studies might suffer 
no interruption, he was introduced by Dr. Simson to Mr. Maclaurin, who was then 
teaching, with so much success, both the geometry and the philosophy of Newton. 
Mr. Stewart attended his lectures, and made that proficiency which was to be 
expected from the abilities of such a pupil, directed by those of so great a master. 
But the modem analysis, even when so powerfully recommended, was not able to 
withdraw his attention from ancient geometry. (Playfair (I822a), IV, p. 5) 

According to Playfair, Stewart would have noticed the difference between 
the study of ancient geometry in Glasgow and the 'new analysis' 
recommended in Edinburgh by Maclaurin. It would seem therefore that, 
while, in Glasgow, Simson taught Newton's philosophy to a number of 
young promising mathematicians approaching Newton's mathematics 
from a 'Euclidean' point of view, in Edinburgh Maclaurin promoted the 
calculus of fluxions starting, only as a background, from Euclid and 
Archimedes. 26 

Some further information on Maclaurin's teaching in Edinburgh can be 
gathered from the Scots Magazine for August 1741: 

He [Maclaurin] gives every year three different colleges, and sometimes a fourth, 
upon such of the abstruse parts of the science as are not explained in the former 
three. 

In the first, he begins with demonstrating the grounds of Vulgar and Decimal 
Arithmetic: Then proceeds to Euclid; and, after explaining the first six books, with 
the Plaine Trigonometry, and use ofthe tables of Logarithms, Sines, etc., he insists 
on Surveying, Fortification, and other practical parts; and concludes this college 
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with the elements of Algebra. He gives Geographical lectures once in the fortnight 
to this class of students. 

In the second college, he repeats the Algebra again from its principles, and 
advances farther in it; then proceeds to the theory and mensuration of Solids, the 
Spherical Trigonometry, the doctrine of the Sphere, Dialling and other practical 
parts. After this he gives the doctrine of the Conic Sections, with the theory of 
Gunnery, and concludes with the elements of Astronomy and Optics. 

He begins the third college with Perspective; then treats more fully of the 
Astronomy and Optics. Afterwards he prelects on Sir Isaac Newton's Principia, and 
explains the direct and inverse method of Fluxions. At a separate hour he begins 
a college of Experimental Philosophy, about the middle of December, which 
continues thrice every week ~ll the beginning of April; and at proper hours of the 
night describes the constellations, and shews the planets by telescopes of various 
kinds. 27 

Perhaps the universities were not the most appropriate places to find 
mathematics in the eighteenth century. The standard biography of the 
early eighteenth-century . philomath' does not necessarily include a 
university education. In many cases mathematical education . came to 
depend upon private enterprise' (Howson (1982), p. 59). Some schools 
specializing in mathematics were founded in the early eighteenth century: 
Sir Joseph Williamson's Free Mathematical School at Rochester (1701); 

Saunder's School at Rye (1708); Neale's mathematical School in Fleet 
Street, London (1715); Churcher's College at Petersfield (1722). However, 
it would be wrong to say that the teaching of David Gregory at Oxford, of 
Saunderson at Cambridge, of Simson at Glasgow and of Maclaurin at 
Edinburgh did not exert any influence on the development of eighteenth­
century British mathematics. In Oxford mathematics soon faded after 
Gregory's death. But Saunderson and Smith established the study of 
mathematics in such a way that Cambridge began to produce math­
ematicians in the second half of the century (Waring, Cavendish, 
Atwood, Brinkley and Maskelyne, for instance, were Cambridge students). 
Simson in Glasgow educated several of the future professors of math­
ematics of the Scottish universities, Colin Maclaurin and Matthew Stewart 
being two of his pupils. Finally, the activities of Maclaurin in Edinburgh as 
Professor of Mathematics gained for mathematics an important place in 
the Scottish Enlightenment. 28 As we will see in chapter 7, Edinburgh 
became one of the most influential centres of reform of the British calculus. 
These early attempts to diffuse the calculus in the universities, which 
began more or less with Newton's death, laid the foundations of important 
trends in British mathematical education. 
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DEVELOPMENTS IN THE CALCULUS 

OF FLUXIONS (1714-33) 

DESPITE ITS minor role in the diffusion of Newtonian science, we might 
expect the calculus of fluxions to have been the main subject of research 
in early eighteenth-century British mathematics. Scientists of outstanding 
ability were active in Great Britain. Some of them, such as Cotes, Taylor, 
Maclaurin and Stirling, were good mathematicians who were able to 
master every aspect of Newton's work on fluxions. But British math­
ematicians devoted more attention to other branches of Newton's 
mathematics: i.e. the geometry of higher order curves and the method of 
series. The reason why the calculus of fluxions was not considered a 
fruitful area of research is that it appeared to have been developed by 
Newton to the highest level of perfection. For instance, in 172 I Colin 
Maclaurin wrote: 

The Quadratures [i.e. Newton (1704c)] brought to such generall [sic] theorems 
that little further seems left to be done in that vast feild [sic] of Invention. 
(Maclaurin (1982), p. 13) 

The direct method allowed one to find the fluxion of all the known fluents, 
whereas the inverse method required term by term integration of power 
series. One of the problem~ left open was to speed up the convergence of 
series; a problem which could be treated by finding appropriate 
transformations involving finite differences. Newton's 'Methodus 
differentialis' (171 IC) appeared more incomplete than' De quadratura' 
(I704c). Also, Newton's 'Enumeratio' (I 704b) was more problematic in 
the classification of cubics. A great interest in the geometry of higher order 
curves is characteristic throughout the eighteenth century in Great 
Britain. This subject deserves more attention, but does not fit into the 
scheme of the present work. The two British mathematicians who, in the 
period taken into consideration in this chapter, committed themselves to 
the project of extending the calculus of fluxions were Taylor and Cotes. 

28 
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They were both motivated by the mechanics of Newton's Principia (1687). 
Probably for this reason they realized that integration was an open field of 
research. 

2.1 Methods of integration 

Almost every aspect of the exact sciences in the eighteenth century can be 
traced back to Newton's Principia. The attention of natural philosophers 
was immediately attracted by the novelty of the mathematical tools, the 
universality of the laws of mechanics and the power of the cosmology of 
the Principia. These interests originated the well-known controversies 
about the nature ofthe calculus, the conservation of dead or live forces, the 
causes of planetary motions. However, it was perhaps more stimulating 
that in the Principia Newton had created and left unanswered some very 
specific problems. It was clear that further explanations were required on 
the motions in resisting mediums, the ebb and flow of the tides and the 
irregularities of the Moon's orbit: three aspects of Newton's theory where 
there was a great discrepancy between theory and observation. In order to 
find a satisfactory solution to these problems, both the mathematics and 
the mechanics of the Principia had to be completely transformed: to a great 
extent the theory of partial differential equations, the calculus of variations 
and continuum mechanics have their origin in this process. 

If it is legitimate to see the progress of eighteenth-century mathematics 
and mechanics as a criticism and development of the ideas and the 
problems of the Principia, then Roger Cotes (1682-1716) occupies a 
privileged position amongst eighteenth-century mathematicians. I He was 
involved from 1709 to 1713 in the preparation of the second edition of the 
Principia, an edition which as a result of his contribution differs appreciably 
from the first. In 1 707 Cotes was named first Plumian Professor at 
Cambridge. As we have already seen, he started lecturing with Whiston on 
experimental philosophy. 2 He also concerned himself with the construction 
of an astronomical observatory at Trinity College, but his premature death 
did not allow him to see this project through to its completion. This work 
was continued by Cotes's cousin, Robert Smith, who was his successor in 
the Plum ian Chair and the editor of his mathematical works. 

Cotes's first published work appeared as a long article in the Philosophical 
Transactions for the year 1 714 with the title 'Logometria' (I 71 7). This 
was reprinted as the first part of Harmonia Mensurarum (1722). Both the 
methods and the contents of' Logometria ' reveal the influence of the years 
of work on Newton's Principia and a deep knowledge of Newton's 'De 
quadratura' (I 704C). In fact many ofthe problems solved have their origin 
in Newton's work. The 'Logometria' consists of six propositions with 
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various scholia and a Scholium Generale which concludes the work. In the 
six propositions Cotes presents a series of results concerning logarithms. 
Here we find a calculation of the natural base for a system of logarithms, 
the result being 2.718281828459. After several theorems on systems of 
logarithms he considers the properties of the hyperbola, the logarithmic 
curve and the equiangular spiral in terms of logarithms and applies these 
results to the study of the vertical ascent and descent in resisting mediums, 
to the determination of the density of the atmosphere as a function of 
altitude, and calculates the change in longitude as a function of the change 
in latitude along a loxodrome. 3 In the Scholium Generale Cotes gives 
geometric solutions to a series of problems on the rectification of curves, 
areas, surfaces and volumes. He also considers mechanical problems such 
as the gravitational attraction of ellipsoids and the oscillations of cycloidal 
pendulums in resisting mediums. 

Even though these results are given in geometric form, they were 
obtained using a table of integrals which was published in the second part 
of Harmonia Mensurarum (1722).4 In his tables Cotes uses a notation which 
expresses the 'harmony' between measures of angles and measures of 
logarithms. Cotes uses: 

R I R; T for R x In (R ; T) 

when R2 is positive, while if R2 is negative, i.e. if R is imaginary, it expresses 
liRarctan(T)I. Cotes integrates' forms' such as: 

dzpa+!a- I 

v(e +fza) i, 

where d, e, f and a are constants, f1 can take integer values, and z is the 
'fluent quantity', or, as we would put it nowadays, z is variable. These 
forms are generalizations of the integrals (' fluents ') tabulated after Prop. 
10 of Newton's 'De quadratura '. But whereas Newton had reduced his 
fluents to the quadrature of conic sections, Cotes performed his integrations 
in terms of logarithms and trigonometric functions. Furthermore his 
notation allowed him to tabulate in a systematic way his integrals, or as 
he called them 'forms of fluents '. It is difficult to say if Cotes was aware of 
iy = In (cos y + is in y). He was certainly able to understand that his tables 
afforded a means of studying the relationships between circular and 
logarithmic functions. The most important result in Harmonia Mensurarum 
(1722) was the so-called Cotes factorization theorem, which allows one to 
find the factors of an ± xn

, n E N.5 The factorization theorem was employed 
by Robert Smith to extend Cotes's integration formulae to 'forms' such as: 
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dZ,IU+!a-I 

f: 2 h 3 i, f1 E 7L ; e+ Za+ gz a+ Z a 

d, e, j, g, h and a are constants, z is a variable. 6 

Smith added ninety-four new integrals to those obtained by Cotes and 
inserted them in the fourth part of Harmonia Mensurarum (1722). He also 
added a series of incomplete works on estimating errors, finite differences 
and summations written by Cotes presumably just before his death. de 
Moivre (1667-1754) was working along the same lines.' In (1708) he 
stated a formula related to the well-known de Moivre formula. In (1730) 
he applied it to derive Cotes's factorization theorem. 

Cotes's work is extremely important and, in a way, exceptional for 
eighteenth-century British mathematics. In solving mechanical or geo­
metrical problems, Cotes proceeds by geometric arguments 'in order to 
reduce the problem to a quadrature. This was typical of Newton who in the 
Principia began his propositions' granting the quadrature of figures'. Only 
after this reduction is the calculus employed in order to measure that 
particular area, arclength, etc. which answers the question. Cotes's 
integrals are interesting because they are in finite form and because they 
allow an understanding of the relationships of circular and exponential 
functions; however, both these aspects were not really appreciated by the 
fluxionists, who, during the eighteenth century, considered Cotes's tables 
of integrals as merely an expedient method of integration. 

2.2 The Methodus Differentialis 

Another Cambridge man, Brook Taylor (1685-1731), is to be included 
amongst the most creative British mathematicians of the early eighteenth 
century. Taylor entered St John's College in 1701 and graduated L.L.B. in 
1709 and L.L.D. in 1714. He was secretary of the Royal Society from 1714 
to 1718. His major work, the Methodus Incrementorum Directa & Inversa 
(I 715), was published in London in 1 715 and influenced many 
mathematicians in the first half of the eighteenth century. 8 

Taylor's Methodus is divided into two parts. The first is devoted to 
Taylor's theol'em, and Newton's method of integration by series and 
summation formulas. The second deals with interpolation and with the 
solution of mechanical problems, such as finding the centres of oscillation 
(see also Taylor (I 714a)) and percussion, the vibrating string problem (see 
also Taylor (I 714b)), and the calculation of the density of the atmosphere. 

Taylor employed ~, ~, ~, etc. to designate the finite differences ~x, ~2X, 
~3X, etc. and x, x, x, etc. to designate the fluxions of x. It is interesting that 
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he used positive and negative integers as superscripts and subscripts for 
higher order differences and fluxions. He designated the successive values 
of x by x, x, x, x, x, etc. Taylor's notation is a proof that it was quite possible , " 
to modify the fluxional notation in order to approach the calculus of 
fluxions as a calculus of operations upon successions of variables, a 
characteristic usually ascribed to the differential notation. 9 The notation 
employed in the Methodus also expressed Taylor's belief that the calculus 
of fluxions was just a particular case of a more general theory, the calculus 
of finite differences, envisaged by Newton in his 'Methodus differentialis' 
lI7I1c). 

Taylor described his (1715) in the Philosophical Transactions as follows: 

When I apply'd my self to consider throughly the Nature of the Method of 
Fluxions, which has justly been the Occasion of so much Glory to its great Inventor 
Sir Isaac Newton our most worthy President, I fell by degrees into the Method of 
Increments, which I have endeavour'd to explain in this Treatise. For it being the 
Foundation of the Method of Fluxions that the Fluxions of Quantities are 
proportional to the nascent Increments of those Quantities: in order to understand 
that Method throughly, I found it necessary to consider well the Properties of 
Increments in general. And from those Properties I saw it would be easy to draw 
a perfect Knowledge of the Method of Fluxions: for if in any case the Increments 
are supposed to vanish and to become equal to nothing, their Proportions become 
immediately the same with the Proportions of the Fluxions. (Taylor (1717), 

PP·339-40 ) 

An example of this passage from a general proposition on increments to 
a proposition on fluxions is given by the proof of Taylor's theorem. In the 
Methodus Taylor, starting with a generalization of a formula of 
interpolation given in the Principia, obtained his famous theorem by simply 
passing from finite differences to fluxions. Even though similar results can 
be found in James Gregory, Newton, Leibniz and Johann I Bernoulli, it 
seems that he was the first to appreciate the importance of this theorem. 
It is worthwhile considering Taylor's proof, because it is characteristic of 
the elegance and heuristic power of his calculus. Proposition VII reads as 
follows :10 

Let z and x be two variable quantities, of which z is increased uniformly by the 
given increments ?, and let n? = v, v -? = v, v -? = v, and so on. Then I say that 
in the time that z increases to z + v, x will likewise increase to 

, \\\ 

V vv vvv 
x+x-+x--+x + .... 

. I'? .. I' 2 . ?2 ,. I' 2 . 3 . ?3 

(Taylor (1715). p. 21: translation by Feigenbaum (1985), p. 40) 
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In Corollary 1 is stated the form of Proposition VII for a . decrease' of z. So, 
if z decreases to z - v, x will decrease to 

, '" v vv vvv 
x-x-+x----x + .... 

. I'? .. I' 2 . ?2 • I' 2 . 3?3 

Then in Corollary 2 Taylor obtains his famous result: 1I 

If. in place of the evanescent increments, the fluxions proportional to them are 
written, and if V, V. v . ... are now made equal, then in the time that z. flowing 
uniformly becomes z + v. x will become 

v v2
•. v3 

x+x-+x--+x + .... 
1 . i 1 . 2 . i2 1 . 2 . 3 . i 3 

(Taylor (1715). p. 23; translation by Feigenbaum (1985). p. 42) 

This last passage has caused some historians much perplexity. However, 
for Taylor's contemporaries it appeared perfectly understandable and 
intuitively sound. Indeed the calculus seen as a limiting case of a theory 
of finite increments seemed to many mathematicians less mysterious than 
the calculus of moments or fluxions. 

A similar interest in Newton's theorems on finite differences motivated 
James Stirling (1692-1770) in his research. Stirling belonged to an 
aristocratic Scottish family connected with the Jacobites. He moved to 
Oxford in 1711 where he acquired great fame as a mathematician, as is 
clearly shown by the number of Oxford men listed as subscribers of his first 
work Lineae Tertii Ordinis Neutonianae (1717). It is possible that, because of 
his political views, he had to leave Oxford in 1716 without graduating. 12 
Later we find him in Italy where he might have had contact with the 
University of Padua. 13 His stay in Italy ended in 1724. Stirling then moved 
to London where he accepted the offer to succeed Benjamin Worster as a 
teacher of mathematics in Watts' Academy, initially a school for clerks and 
accountants. In 1730 he published his masterpiece the Methodus 
Differentialis (1730). Stirling's scientific activity finished in the 1730s. 
From 1735 to his death he worked as an administrator of the lead mines 
at Leadhills, Lanarkshire; and so he spent the rest of his life in isolation 
without pursuing his scientific activities. 14 

Stirling's Methodus Differentialis (1730) greatly extends Newton (I 7IIC). 
It consists of an introduction and is in two parts; the aim of the first part 
is to speed up the convergence of series, while the second is devoted to 
interpolation. 

In the introduction Stirling presents the notation for infinite series: 

S = T' +T" + TIN + ... , 
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and declares his intention of dealing with series of the form: 

( .) T = A + Bz + Cz(z - I) + Dz(z - I) (z - 2) + '" 

and 
(**) T = A + B/z +C/(z(z+ I)) + D/(z(z+ I) (z + 2)) + .... 

In fact he states: 15 

Of course, the former formula should be used when z is a small quantity, while 
the latter when z is large. And these series which are composed of factors in 
arithmetical progression are much more useful than the ordinary ones which 
consist of ascending or descending powers of the unknown quantity. (Stirling 
(1730), p. 6) 

So we can see that Stirling is trying to study series of the form (.), ( •• ), 
because in many cases the power series which were usually employed 
converge too slowly. Therefore he needs a method of facilitating the 
conversion of powers into factorials and vice versa; he obtains this method 
in two ways, which written in modern notation are (see Tweedie (1822), 
p. 3 1 ): 

00 

z-n = L c~-n+I/(Z(Z+I) ... (z+r)), 
r-n-l 

where r~ and C~ represent the Stirling's numbers. 16 Stirling does not use 
such a general notation, but gives the examples for the lower powers, e.g. 
he writes (Stirling (1730), p. 8): 

Z3 = z+3 Z(Z-I)+Z(Z-I)(Z-2) 
Z4 = Z+ 7z(z- 1)+6z(z- I) (Z-2)+Z(Z- I) (Z-2)(Z- 3) 
Z5 = Z+ 15z(z- 1)+25z(z- I)(Z-2)+ IOZ(Z- I) (Z- 2) (Z- 3) 

+z(z- I) (Z- 2) (Z- 3) (z- 4).17 

As an example of factorial representation of series Stirling gives (p. 12): 

I I I-n 2-3n+n2 
--=--+ + + .... 
z2+nz z(z+I) Z(Z+I)(Z+2) z(Z+IHZ+2)(z+3) 

Other important results on speeding up the convergence of series are to be 
found in part I de Summatione Serierum, pp. 15-84 (see Krieger (1968)). 

In the second part de Interpolatione Serierum, pp. 85-153, after some 
introductory pages devoted to Newton's interpolation formulae and to 
Taylor's theorem, Stirling deals with two important results, nowadays 
expressed as: 

rH) = "hr, 
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The former arises from the problem of interpolating the factorials I, I, 
2, 6, 24, 120, 720, etc., the law of succession being 7;.+1 = z7;., with 
7; = I. Stirling considers the logarithms of the 7; so as to facilitate the 
accuracy of the interpolation :18 

I propose to find the term which is in the middle between the first two, 1 and I. 
And since the logarithms of the initial terms have slowly converging differences, I 
will first determine the term which is in beween two terms distant enough from the 
beginning, for instance between the eleventh 3628800 and twelfth 39916800; 
and from this I will go back to the required term. (Stirling (1730), p. 110) 

Once a value for 10gl7;I+l/z) = 7.07552590569 has been found by 
interpolation, Stirling divides T II + I/Z by 10'5, 9'5, ... ,1'5 to obtain TI+ I/Z = 
0'8862269251, and its double 7;IZ = 1'7724538502. Finally, he 
observes: 19 

Therefore the term between 1 and 1 is 0'8862269251; whose square is 
0·7853 ... etc., which is of course the area of a circle whose diameter is equal to I. 
And twice that term, 1'7724538502 [ ... J is equal to the square root of the number 
3·1415926 ... etc., which denotes the circumference of the circle whose diameter is 
equal to I. (Stirling (1730), pp. 112-13) 

The second result is on pp. 135-7. Here Stirling's aim is to calculate 

log(x +n) + log (x + 3n) + log (x + 5n) + .. , + log (z- n). 

He expresses this sum as the difference of two series: 

z log lz) az an 7an 3 31an 5 

------+--- + ... 
2n 2n 12Z 360z3 1260z5 

and 
x log (x) ax an 7an 3 31an 5 

---+--- + ... , 
2n 2n 12X 360x3 1260x5 

where a = I lIn 10. In the following Example II Stirling applies this result 
to the calculation of log(x!) and obtains (see Tweedie (1922), p. 43): 

log (x!) = tlog(21T)+(x+i)log(x+i)-(x+i) 

_ I + 7 
2'12 'lx+t) 8' 360lx+iP 

This series was to be reformulated in many other forms, and has caused 
quite a lot of problems as to its convergence le.g. see Bayes (1764)). In fact 
the series is divergent, but it can be used to approximate log(x!) ifx is large. 
Typically, Stirling does not perceive any difficulty and develops his proof by 
purely algebraical manipulations. zo 



PART I: THE EARLY PERIOD 

2.3 Geometry 

The first systematic work devoted to Newton's classification of cubics is 
Stirling's Lineae Tertii Ordinis Neutonianae (I 71 7).21 It deserves attention for 
several reasons. In it Stirling applied the calculus to the study of the 
seventy-two species of cubic curves classified by Newton and added four 
new ones (which did not appear in print in Newton II 704b), even though 
Newton had already obtained them). The work was completed by an 
appendix on three topics which by 1720 were routine exercises: i.e. the 
study of the brachistocrone, the catenaria and orthogonal trajectories to a 
family of hyperbolas. 22 The introductory part on fluxions (pp. 6-40) was 
a useful comment of Newton's 'De analysi' (I7IIb). Stirling devoted 
particular attention to Newton's methods of finding power series 
representations of fluents. He then proceeded (pp. 41-83) to explain how 
the calculus of fluxions could be applied to the study of curves: finding 
zeros, asymptotes, cusps, points of contact, etc. After this introductory 
material Stirling moved on to consider Newton's' Enumeratio linea rum 
tertii ordinis'. This is interesting because compared to Newton, who had 
given a geometric treatment of cubics, Stirling employed the calculus. 
Therefore, Stirling not only commented on the 'De analysi' (17IIb) but 
also explained how the analytical methods of the calculus of fluxions could 
be successfully applied where Newton had preferred geometry. 

Three years after Stirling's first work, another Scottish mathematician, 
Colin Maclaurin (1698-1746), entered the scene of British mathematics 
with a work devoted to Newton's geometrical work, the Geometria Organica 

(Maclaurin II 720C)). 23 In contrast with Stirling, Maclaurin did not use the 
calculus of fluxions. He had learnt mathematics at the University of 
Glasgow, which he had entered in 1 709 at the age of eleven. Robert 
Simson, who in 1 71 1 had been elected Professor of Mathematics in 
Glasgow, took care of young Colin's education and communicated to him 
a great esteem for Greek geometry. In 1717 Maclaurin was chosen for the 
Chair of Mathematics in Marischal College in Aberdeen. However, he did 
not fulfil his duties since in 1719 we find him in London and from 1722 
to 1724 in France. In London Maclaurin met Newton who, ~s President 
of the Royal SOCiety, approved the publication of the Geometria Organica. In 
France, where he went as a tutor to the son of Lord Polwarth, he was 
awarded a prize from the Academie des Sciences for a dissertation on the 
percussion of bodies. 24 On his return to Scotland, he was elected, through 
the recommendation of Newton, Professor of Mathematics in the University 
of Edinburgh, a post he held up to his death in 1746. In Edinburgh 
Maclaurin wrote A Treatise of Fluxions (1742) in which he collected 
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together a great deal of his research. He is also the author of A Treatise of 
Algebra (I 748b), a commentary to Newton's Arithmetica Universalis, and 
An Account of Sir Isaac Newton's Philosophical Discoveries (1748a), one of 
the most popular introductions to Newton's natural philosophy. 

In the Geometria Organica (I 720C) Maclaurin extended Newton's organic 
description of cubics, in which curves were described by the motions of 
given angles, to curves of a higher order. Even though Maclaurin obtained 
his results without the use of the calculus, or any geometric procedure 
equivalent to the techniques of the calculus, on pp. 120-35 he gave some 
theorems on central forces 'in order to show the use of curve lines in 
Natural philosophy'. Here Maclaurin used dotted letters to represent 
'momenta', i.e. infinitesimal quantities generated by motion. 25 These 
pages, derived from Keill (I7 10), are completely separate from the rest of 
the work since no attempt is made to link the geometry of Newton's 
'Enumeratio' (I 704b) with the analysis of 'De quadratura' II 704c). As 
we will see later, one of the main objectives of Maclaurin's research in the 
1730S was to systematize in a comprehensive theory the various aspects 
of Newton's mathematical work. 

The geometrical bias of the young Maclaurin was not an exception in 
early eighteenth-century British mathematics. Newton, Halley and Simson 
were deeply concerned with the restoration of the works of Greek 
geometers: in particular, the restoration of Euclid's Porisms became a 
dominant programme, which they inherited from their sixteenth-century 
predecessors like Commandin6. They were motivated by the genuine belief 
that the geometrical analysis of the ancients was superior to the modern 
techniques of the calculus. The ancients were thought to have concealed 
their resolutio and to have presented only the synthetic demonstrations. As 
Newton wrote: 

Indeed their method is more elegant by far than the Cartesian one. For he achieved 
the results by an algebraical calculus which, when transposed into words 
(following the practice of the Ancients in their writings), would prove to be so 
tedious and entangled as to provoke nausea, nor might it be understood. But they 
accomplished it by certain simple propoSitions, judging that nothing written in a 
different style was worthy to be read, and in consequence concealing the analysis 
by which they found their constructions. (Newton (1967-81), IV, p. 277) 

The myth of the power of Greek geometry was part of a more general 
attitude towards ancient science. It is known that Newton was convinced 
that the ancients had discovered the general laws of the motions of the 
planets. 26 This programme, rather than the Newtonian mechanics and 
astronomy, motivated Robert Simson, the young Colin Maclaurin, and 
later Matthew Stewart. 



3 

THE CONTROVERSY ON THE 

FOUNDATIONS OF THE CALCULUS 

(1734-42 ) 

THE PROBLEM offoundations did not exist in the eighteenth century as we 
understand it nowadays. Mathematicians were more occupied with 
defining the . principles' of the calculus. They were concerned with the 
ontological status of the objects of the calculus and with the correctness of 
the methods of the calculus according to the standards of Aristotelian 
logic. In 1734 these issues were raised by Berkeley in The Analyst (1734). 
His criticisms were particularly devastating in Britain since the ter­
minology of the fluxionists was very loose, being a mixture of Newtonian 
and Leibnizian ideas. A controversy between Berkeley and some defenders 
of Newton occupied the years 1734-5. Later the debate divided the 
fluxionists themselves. These years of debate were of great importance 
since the British were compelled to reread Newton in order to remove from 
his calculus the flaws indicated by Berkeley. The great champion of this 
process of reinterpretation was Maclaurin. After his Treatise (1742) the 
calculus of fluxions solidified into a theory based on an . axiomatization ' of 
the basic properties of motion and velocity in which geometric limit 
processes were prominent. 

3.1 Berkeley's criticisms of the calculus 

The most famous aspect of the history of eighteenth-century British 
calculus is undoubtedly the controversy originated by The Analyst (1734). 
As is well known, George Berkeley (1685-1753) criticized in this short 
pamphlet the foundations of the fluxional and the differential calculus. The 
contents of The Analyst have already been analysed in detail in Grattan­
Guinness (1969): here it will be sufficient to summarize the main steps of 
Berkeley's criticism of the calculus. 

Berkeley never denied that the calculus could successfully solve complex 
geometrical and mechanical problems, but he considered unsatisfactory 

38 
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the definitions of the terms and the justifications for the methods of proof. 
In his opinion, the calculus was far from being as exact and certain as the 
other branches of mathematics: if correct results were achieved, it was 
because of a fortunate compensation of errors. Berkeley did not therefore 
direct his criticism at particular aspects of the calculus: his objective was 
to denounce the lack of rigour in the foundations of the new analysis of 
Leibniz and Newton. I 

Berkeley's criticisms can be divided into two types: ontological and 
logical. In the ontological criticisms Berkeley argued that the objects to 
which the calculus refers do not exist. These criticisms were important for 
the fluxionists: it was difficult for them to attribute a scientific character to 
a theory in which . meaningless' symbols were employed. British 
mathematicians had an empiricist philosophical background. A theory, in 
order to be accepted as sCientific, had to avoid reference to fictitious, 
hypothetical entities, such as Leibnizian vortices. Newton's cosmology was 
maintained to be superior to Leibniz's because Newton would have 
carefully banished terms devoid of empirical meaning. Even though 
nobody tried to develop an empiricist methodology of mathematics, it was 
somehow implied that mathematics too had to possess a certain empirical 
foundation. 2 In particular, the calculus of fluxions was thought to be a 
theory dealing with continuously varying magnitudes, and, as we know, 
the study of continuous magnitudes could be carried on by using 
infinitesimals (our (I) and (2), see p. 6) or rates of increase (our (3) and 
(4)). Berkeley directed his attention to both. 

Berkeley first of all equated (I) (differentials) and (2) (moments); he 
wrote: 

The Points or mere Limits of nascent Lines are undoubtedly equal, as having no 
more magnitude one than another, a Limit as such being no Quantity. If by a 
Momentum you mean more than the very initial Limit, it must be either a finite 
Quantity or an Infinitesimal. But all finite Quantities are expressly excluded from 
the Notion of a Momentum. Therefore the Momentum must be an Infinitesimal. 
(Berkeley (1734), p. 18) 

The notion of infinitesimals is not empirically founded according to 
Berkeley's sense-data-based theory of knowledge: the infinitesimals are, by 
definition, beyond the minimum sensibile; they are outside the scope of our 
understanding of existence. From this point of view, a calculus of 
infinitesimals dealt with non-existing entities and therefore was devoid of 
any scientific character. The fluxionists had the alternative of accepting as 
terms of reference in their calculus only finite rates of change (our (3)) or 
velocities (our (4)). But also in these cases, Berkeley thought, the 
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'analysts' went beyond the limits of our knowledge: we can perceive and 
measure finite changes of position in space and finite intervals of time. The 
term 'velocity' is empirically founded if used to mean the ratio of a finite 
space and a finite time, but we cannot have any appreciation of an 
instantaneous velocity: 

A POint may be the limit of a Line: a Line may be the limit of a Surface: a Moment 
may terminate Time. But how can we conceive a Velocity by the help of such 
Limits? It necessarily implies both Time and Space. and cannot be conceived 
without them. And if the Velocities of nascent and evanesce~t Quantities, i.e. 
abstracted from Time and Space. may not be comprehended. how can we 
comprehend and demonstrate their Proportions? Or consider their rationes primae 
and ultimae? For. to consider the Proportion or Ratio of Things implies that such 
Things have Magnitude: that such their Magnitudes may be measured. and their 
Relations to each other known. (Berkeley (1734), pp. SO-I) 

It is not possible to attribute existence to what is beyond the scope of our 
perception, and fluxions, as long as they are defined as ultimate ratios of 
vanishing quantities. are by definition something which our senses cannot 
reach. Furthermore, according to Berkeley's operational view of physical 
magnitudes, the concepts of space and time have a meaning only if they 
are defined as results of measurements: this was one of the points of 
Berkeley's criticism of Newtonian absolute time and space. Therefore the 
notion of velocity could be accepted only as the result derived from 
measuring a finite space and a finite time. 

Berkeley did not concern himself only with the ontological question of 
the referents of the terms 'fluxion', 'moment' and 'differential'; he also 
turned his attention to the deductive techniques of the calculus. His logical 
criticism. both of the calculus of limits and of the calculus of infinitesimals, 
was that the conclusions were obtained by taking as given a hypothesis 
and its negation. As was well known from scholastic logic anything could 
follow from a contradiction. He wrote: 

If. with a View to demonstrate any Proposition, a certain POint is supposed. by 
virtue of which certain other POints are attained; and such supposed Point be it self 
afterwards destroyed or rejected by a contrary Supposition: in that case. all the 
other Points, attained thereby and consequent thereupon, must also be destroyed 
and rejected, so as from thence forward to be no more supposed or applied in the 
Demonstration. (Berkeley (1734), pp. 19-20) 

Berkeley tried to show that the 'analysts' were guilty of this fallacy. In the 
calculus of infinitesimals the ambiguous nature of the differentials served 
to hide the fact that the demonstrations were based from the outset on the 
supposition that dx ~ 0, a supposition which was then denied at a crucial 
point. In fact, when the principle of cancellation of higher order differentials 
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(dnx+dn+1x = dnx) was employed, differentials were treated as zeros and 
the quantities multiplied by them were eliminated from the calculation. 
Similarly, in the calculus of limits there was a 'shifting' of a supposition: 
once again a quantity introduced as different from zero was equated to zero 
in the middle of the calculation. 

Berkeley reached a very high standard of accuracy in his logical 
analysis, and his proposal to consider the calculus as grounded on a 
compensation of errors exerted a certain influence in the history of the 
eighteenth-century calculus. 3 The importance of The Analyst for the 
development of the British calculus can be evaluated by comparing 
the careless approach to foundations of the fluxionists before 1734 

with the immediate answers to Berkeley's criticisms. 

3.2 The definitions of the basic terms of the calculus in the works of 
the early fluxionists 

The problem of foundations was never seriously treated before Berkeley. 
An example of the careless use of definitions which characterizes the works 
of the early fluxionists can be seen in Stone (1730), possibly a source for 
Berkeley. Stone wrote in the Preface to his translation of L'Hospital's 
Analyse des Injiniment Petits (1696): 

[almost all the Foreigners] represent the first Increment, or Differential (as they call 
it) by the letter d, the second by dd, the third by ddd, &c.; the fiuents, or Flowing 
Quantities, being called Integrals. But since this method in the Practice thereof. 
does not differ from that of Fluxions, and an Increment or Differential may be taken 
for a Fluxion: out of regard to Sir Isaac Newton, who invented the same before the 
year 1669, I have altered the Notation of our Author, and instead of d, dd, d\ &c. 
put his Notation, viz. X, X, f, &c. or some other of the last Letters of the Alphabet, 
printed thus, and called the infinitely small Increment, or Differential of a 
Magnitude, the Fluxion of it. (Stone (1730), p. xviii) 

Indeed, as Newton had warned in the . Account' to the Commercium 
Epistolicum (1715). x. a finite velocity. cannot be taken for dx. an 
infinitesimal. However. as De Morgan pOinted out in his (1852). equating 
fluxions and differentials was a common practice in this early period; and 
this created a great confusion in the terminology of early fluxionists. 

For instance, Joseph Raphson in his Mathematical Dictionary (1702) 

begins the article' Fluxions' as follows: 

Fluxions. in Geometry is a new improvement of it upon the doctrine of Indivisibles 
and Arithmetic of Infinites. (Raphson (1702). page unnumbered) 

Newton had tried to distinguish between a calculus of moments and a 
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calculus of limits: in particular' De quadratura' (1704c) was an attempt 
to base the calculus solely upon limits. But generally Newton's effort was 
not understood.4 

John Harris, who inserted an English translation of Newton's 'De 
quadratura' in the second volume of the Lexicon Technicum ((1704, 1 710), 
II, 'Quadrature of curves '), did not feel the need to change the substance 
of the article 'Fluxions' published in the first volume (1704) where we 
read: 

by the Doctrine of Fluxions, we are to understand the Arithmetick of the Infinitely 
small Increments or Decrements of Indeterminate or variable Quantities, or as some 
call them the Moments or Infinitely small Differences of such variable Quantities. 
These Infinitely small Increments or Decrements, our Incomparable Mr. Isaac 
Newton, calls very properly by the Name of Fluxions. (Harris (1704, 1710), I, 
, Fluxions') 

In the second volume Harris continued the article 'Fluxions' with a 
'general Method of finding the Fluxions of all Powers and Roots, I had from 
the Honourable Fr. Robartes, Esquire'. Harris wrote: 

If a Quantity gradually increases or decreases, its immediate Increment or 
Decrement is called its Fluxion. Or the Fluxion of a Quantity is its Increase or 
Decrease indefinitely small. (Harris (1704, 1710), II, 'FluXions') 

The conception of continuity adopted by the early fluxionists was in 
the great majority of cases that of Newton's 'De analysi': i.e. they based 
the calculus on infinitesimals. For instance, Jones wrote in Synopsis 
Palmariorum Matheseos (1706): 

all Curved Lines may be considered as composed of an Infinite Number of Infinitely 
little right Lines: And anyone of them Produced, only Touches the Curve, therefore 
is called the Tangent of that Point of the Curve. (Jones (1706), p. 226) 

The use of infinitesimals and the lack of a clear distinction between 
fluxions and differentials was so common that it would be possible to add 
many other quotations. 5 Thinking about the calculus in terms of 
infinitesimals was so natural for early Newtonians that John Keil!. as we 
have already seen one of the most vehement defenders of Newton's priority 
over Leibniz, could maintain the physical existence of' fluxions of fluxions, 
or infinitesimals of infinitesimals' (see chapter I, section i.3). 

Taylor and Stirling came closer to 'De quadratura' (1704c). Even 
though their observations on the nature of the calculus are not completely 
coherent, they sometimes hinted that the calculus of fluxions was to be 
conceived as a limiting case of the calculus of finite differences. In his 
Methodus Dijferentialis (1730), following a proof of Taylor's theorem, 
Stirling wrote:6 
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Here we have an idea of the analogy between the differential method [Methodum 
Differentialem] and the ordinary method of series: in the latter fluxions, or ultimate 
ratios of differences, are employed; in the former, in a much more general way, we 
employ differences of any magnitude. (Stirling (1730), p. 103) 

Taylor and Stirling were motivated to adopt this approach to the 
calculus of fluxions because they realized the usefulness of studying the 
limiting forms of interpolation formulas. Their researches probably 
suggested to them that the calculus of limits was a general theory which 
could link Newton's methodus differentialis and Newton's method offluxions. 
Taylor indeed came close to rejecting the use of infinitesimals: 

Some people, because that the Fluxions are proportional to the nascent Increments 
of Quantities, have thought that by the Method of Fluxions Sir Isaac Newton has 
introduced into Mathematicks the ConSideration of infinitely little Quantities; as if 
there were any such thing as a real Quantity infinitely little. But in this they are 
mistaken, for Sir Isaac does only consider the first or last Ratio's of Quantities, 
when they begin to be, or when they vanish, not after they are become something, 
or just before they vanish; but in the very moment when they do so. In this case 
Quantities are not consider'd as infinitely little; but they are really nothing at the 
time that Sir Isaac takes the Proportions of their Fluxions; and the Truth of this 
Method is demonstrated from the Principles of the Method of Increments, in the 
same manner as the Ancients demonstrated their Conclusions in the Method of 
Exhaustions, by a Deductio ad Absurdum. (Taylor (1717), pp. 342-3) 

This passage by Taylor is quite an exception: generally early fluxionists 
did not distinguish between the two approaches to the calculus, one in 
terms of infinitesimals, the other in terms of limits. The Commercium 
Epistolicum itself ended with the conclusion that 

the Differential Method is one and the same with the Method of Fluxions, excepting 
the Name and Mode of Notation; Mr. Leibniz calling those Quantities Differences, 
which Mr. Newton calls Moments or Fluxions; and marking them with the Letter 
d, a Mark not used by Mr. Newton. (Collins 1I713), pp. 121-2) 

This was the accepted view when Berkeley wrote The Analyst. 

3.3 The doctrine of prime and ultimate ratios 

Berkeley's criticisms provoked much interest in the foundations of the 
fluxional calculus. In the years immediately following the publication of 
The Analyst (1734) several pamphlets were published in answer to 
Berkeley, and several periodicals devoted large sections to the debate on 
foundations. 7 British mathematicians were stimulated to read Newton's 
work more carefully: different translations of the first eleven lemmas of 
book I. of the second lemma of book II of the Principia (1687), and of the 
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introduction to 'De quadratura' (1704c) were compared.s Even though 
the problems raised by Berkeley remained unsolved, the accuracy in the 
use of terms greatly improved. 

The starting point for the fluxionists' answers to Berkeley was the 
warning placed after the eleven lemmas of the Principia (Book I, Section I) 
on the doctrine of prime and ultimate ratios: 

Therefore if hereafter I should happen to consider quantities as made up of 
particles, or should use little curved lines for right ones, I would not be understood 
to mean indivisibles, but evanescent divisible quantities; not the sums and ratios 
of determinate parts, but always the limits of sums and ratios; and that the force 
of such demonstrations always depends on the method laid down in the foregoing 
Lemmas.9 

The common answer of the fluxionists was that Berkeley's logical criticism 
was applicable only to the differential method, which was employed by 
Newton merely to abbreviate the proofs. Newton's genuine method was 
the method of limits, or of . prime and ultimate ratios', which was quite 
different from the Leibnizian method. In the calculus of limits the whole 
calculation represents the steps of a process of approximation, and, it was 
maintained, there is no contradiction in making a quantity equal to zero 
at a certain point. Therefore, Berkeley was unfair when he attributed the 
same logical fallacy to the two methods. 1o 

However, the fluxionists' theory of limits was not without its 
difficulties. Newton himself felt the necessity to give some explanations. 
We read in the Principia: 

Perhaps it may be objected. that there is no ultimate proportion of evanescent 
quantities; because the proportion. before the quantities have vanished. is not the 
ultimate. and when they are vanished is none. But by the same argument it may 
be alleged that a body arriving at a certain place. and there stopping. has no 
ultimate velocity; because the velocity, before the body comes to the place. is not 
its ultimate velocity; when it has arrived. there is none. 11 

Newton went on to give kinematical illustrations of the existence of a 
limiting value and to explain that his method did not imply the existence 
of infinitesimals. 

These pages appealed to the fluxionists for two reasons. First of all, 
Berkeley's ontological criticism had received. in their opinion, a full 
answer: the calculus did not deal with fictional or non-existing entities, 
but rather with' tangible' motions and velocities. 12 Secondly, the fallacy of 
. shifting a supposition' was implied in the principle of cancellation of 
higher order differentials but not in the limit processes. 

The first point does not appear to be satisfactory. There is a circularity 
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in basing the calculus, a mathematical tool devised to study kinematics, on 
the concepts of time and velocity. It is interesting to see that this was never 
really felt to be a difficulty by Newtonian mathematicians. For instance, 
William Emerson (1701-82) expressed ideas widely shared amongst the 
British when he wrote; 

Let a hollow Cylinder be filled with Water, and let it flow freely out through a Hole 
at the Bottom of it. It is well known, that the velocity of the effluent Water depends 
on the Height of the Water within the Cylinder; and therefore, since the Surface 
of the incumbent Water continually descends without any the least Stop, the 
Velocity of the effluent Stream will continually decrease, till it all be run out. 
Therefore it is plain, there can be no two moments of Time, succeeding each other 
so nearly, wherein the Velocity of the running Water is precisely the same. And 
therefore the Velocity that the effluent Water has at any given Point of Time, 
belongs only to that one particular, indivisible Moment of Time, and no other: And 
this is accurately the fluxion of the Fluid flowing out at that Moment of Time. Now 
if precisely at that Moment you begin and continue to pour more Water into the 
Cylinder, so that the surface of the Water may descend no lower, but keep its Place; 
then the effluent Water will also retain its Velocity, and continue to be the Fluxion 
of the Fluid as before. Now these are the genuine Effects and Operations of Nature 
itself, and do, in a manner visibly, confirm the truth of what has been said of the 
Nature of Fluxions. (Emerson (1743), pp. ix-x) . 

The second point created a lot of problems. As Berkeley noticed, if the 
ultimate ratio was not a ratio of infinitesimals, it was to be understood as 
0/0. Freeing the calculus from infinitesimals opened lip the question about 
the paradoxical nature of the limiting ratio. In fact, Berkeley's opponents 
gave conflicting explanations of Newton's theory of limits. 

An example of alternative interpretations is given by the quarrel 
between James Jurin (1684-175°) and Benjamin Robins (1707-51).13 

Berkeley was probably amused to see that two fluxionists were unable to 
agree on such an important subject. Robins and Jurin discussed at great 
length Newton's theory of limits. 14 They disagreed on the meaning of the 
phrase' ultimo fiunt equales' occurring in the first lemma (Book I, section 
I) of the Principia. According to Robins the limit to which a variable tends 
is never achieved: his definition was: 

we shall in the first place define an ultimate magnitude to be the limit. to which 
a varying magnitude can approach within any degree of nearness whatever. 
though it can never be made absolutely equal to it. (Robins (1735), p. 53) 

While Jurin wrote: 

By arriving at a limit I understand Sir Isaac Newton to mean. that the variable 
quantity. or ratio. becomes absolutely equal to the determinate quantity. or ratio, 
to which is supposed to tend. (The Present State of the Republick of Letters. XVI (Sept. 
1735). p. 300) 
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The interest of the opposition between Jurin and Robins consists in the fact 
that they employed different models for the calculus. Robins was able to 
maintain his limit-avoiding interpretation because he understood limit 
processes as non-kinematical approximations. He expressly distinguished 
between a method of fluxions where quantities are considered as varying 
in time and a method of prime and ultimate ratios, equivalent to the Greek 
method of exhaustion. In the latter the concepts of time and velocity are 
not employed. It may be that Jurin adhered more strictly to the Principia 
and conceived the limit processes as kinematical; for ipstance, in his 
opinion, the chord and the tangent of Lemma VII (Book I. Section I) 'at 
the same instant of time, arrive at the same proportion of a perfect 
equality' (see The Present State of the Republick of Letters, XVI (Sept. 1735), 
p. 379). Even though the problem of the double meaning of Newton's 
ultimate ratios was not resolved either by Jurin or by Robins, their 
discussion had the merit of giving expression to the opposition between 
two conflicting interpretations of Newton's theory of prime and ultimate 
ratios. 15 

Another example of logical analysis of the theory of prime and ultimate 
ratios is given by the Introduction to the Doctrine of Fluxions (1736) written 
by Thomas Bayes (1702-61), one of the fathers of probability theory. As 
G. C. Smith has shown in (1980), Bayes developed a systematic theory on 
the operations with limits which resemble those of Cauchy. He stated the 
following laws: 

(I) Ifult.a:b = A: Band ult.b:d = B:D then ult. a:d = A:D, where ult. means 'the 
ultimate ratio of'. 
(2) If in a time interval T for the fiuents a, b, x and y holds the proportion: 
a:b::A ±x: B±y, and at the end ofthattime a, b, x and y vanish then: ult.(a± b)/ 
b = (A±B/B). 

By using (I) and (2) Bayes showed that x/fj = ult.(~x/~y), that the fluxion 
of a + b is equal to a + b and that the fluxion of the product ab is equal to 
ab+ab. However, Bayes was obviously very far from understanding the 
concept of function and his theorems are always referred to geometric 
processes of approximation. Henry Pemberton, Jacob Walton and James 
Smith also had a minor role in the controversy with Berkeley. But one can 
safely say that the controversy did not end in 1735; in all the treatises on 
fluxions of the second half of the century there was a preface dealing with 
the vindication of Newton's theory against the criticisms of the Bishop of 
Cloyne. 
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3.4 The foundations of the calculus in Maclaurin's Treatise of Fluxions 

The most authoritative answer to Berkeley was given by Colin Maclaurin. 
In the Treatise of Fluxions (1742) he presented an interpretation of 
Newton's calculus which had a great infiuence in Great Britain. 16 With few 
exceptions, Maclaurin's view of the calculus dominated the second half of 
the century: the infinitesimals and the moments of the early fluxionists 
were definitively abandoned. Maclaurin (1742) begins with the following 
declaration: 

A LEITER published in the year 1734, under the title of The Analyst, first gave 
occasion to the ensuing Treatise, and several reasons concurred to induce me to 
write on this Subject at so great a length. The Author of that Piece had represented 
the method of Fluxions as founded on false Reasonings, and full of Mysteries. His 
Objections seemed to have been occasioned, in a great measure, by the concise 
manner in which the Elements of this Method have been usually described; and 
their having been so much misunderstood by a person of his abilities, appeared to 
me a sufficient proof that a fuller Account of the Grounds of them was requisite. 

Though there can be no comparison made betwixt the extent and usefulness of 
the antient and modem Discoveries in Geometry, yet it seems to be generally 
allowed that the Antients took greater care, and were more successful 1n 
preserving the Character of its Evidence entire. This determined me, immediately 
after that Piece came to my hands, and before I knew any thing of what was 
intended by others in answer to it, to attempt to deduce those Elements after the 
manner of the Antients, from a few unexceptionable principles, by Demonstrations 
of the strictest form. (Maclaurin (1742), pp. vii-viii) 

The Preface is followed by a long introduction on the method of 
exhaustion. Maclaurin's purpose is to show that the calculus of fluxions is 
a generalization of the' geometry of the antients'. He clearly opposed the 
'method of the antients' and the method of fluxions to the method of 
infinitesimals: 

In what Archimedes had demonstrated of the limits of figures and progressions, 
there were valuable hints towards a general method of considering curvilinear 
figures; so as to subject them to mensuration by an exact quadrature, an 
approximation, or by comparing them with others of a more simple kind. Such 
methods have been proposed of late in various forms, and upon different principles. 
The first essays were deduced from a careful attention to his steps. But, that his 
method might be more easily extended, its old foundation was abandoned, and 
suppositions were proposed which he had avoided. It was thought unnecessary to 
conceive the figures circumscribed or inscribed in the curvilinear area, or solid, as 
being always assignable and finite; and the precautions of Archimedes came to be 
considered as a check upon Geometricians, that served only to retard their 
progress. Therefore, instead of his assignable finite figures, indivisible or infinitely 
small elements were substituted; and these being imagined indefinite, or infinite, 
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in number, their sum was supposed to coincide with the curvilinear area, or solid. 
(Maclaurin (1742 ), p. 37) 

Maclaurin's opposition to the method of infinitesimals, to the 'Geo­
metricians' who • had involved themselves in the mazes of infinity' 
occupies many pages: they, who abandoned the' constant practice of the 
antients', have accepted the infinite divisibility of matter and the vortex 
theory of planetary motions: 

From geometry the infinites and infinitesimals passed into philosophy, carrying 
with them the obscurity and perplexity that cannot.fail to accompany them. An 
actual division, as well as a divisibility of matter in infinitum is admitted by some. 
Fluids are imagined consisting of infinitely small particles, which are composed 
themselves of others infinitely less; and this sub-division is supposed to be 
continued without end. Vortices are proposed, for solving the phaenomena of 
nature, of indefinite or infinite degrees, in imitation of the infinitesimals in 
geometry; that, when any higher order is found insufficient for this purpose, or 
attended with an insuperable difficulty, a lower order may preserve so favourite a 
scheme. Nature is confined in her operation to act by infinitely small steps. Bodies 
of a perfect hardness are rejected, and the old doctrine of atoms treated as 
imaginary, because in their actions and collisions they might pass at once from 
motion to rest, or from rest to motion, in violation to this law. Thus the doctrine 
of in finites is interwoven with our speculations in geometry and nature. (Maclaurin 
(174 2 ), p. 39) 

However, we have already found Maclaurin using infinitely little 
quantities in his Geometria Organica (I 720C) (see chapter 2, section 2.3). 
His shift from a differentialist approach to the rejection of infinitesimals is 
quite representative of the change which occurred after Berkeley's Analyst 
(1734). In a letter to Stirling dealing with the preparation of the Treatise 
of Fluxions (1742), Maclaurin confessed: 

I am not at present inclined to put my name to it [the Treastise of Fluxions]. 
Amongst other reasons there is one that in my writings in my younger years I have 
not perhaps come up to that accuracy which I may seem to require here. When 
I was very young I was an admirer too of infinites; and it was Fontenelle's piece 
that gave me a disgust of them or at least confirmed it together with reading some 
of the Antients more carefully than I had done in my younger years. (in Tweedie 
(1922). p. 74) 

How then is it possible to link' Archimedes's method' with the method 
of fluxions, avoiding the unsafe concept of infinitesimal? Maclaurin states 
his programme very clearly: 

In explaining the Notion of a Fluxion I have followed Sir Isaac Newton in the first 
Book. imagining that there can be no difficulty in conceiving Velocity wherever 
there is Motion; nor do I think that I have departed from his Sense in the second 
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Book; and in both I have endeavoured to avoid several expressions. which. though 
convenient. might be liable to exceptions. and. perhaps. occasion disputes. I have 
always represented Fluxions of all Orders by finite Quantities. the Supposition of an 
infinitely little Magnitude being too bold a Postulatum for such a Science as 
Geometry. But because the Method of Infinitesimals is much in use. and is valued 
for its conciseness. I thought it was requisite to account explicitly for the truth. and 
perfect accuracy of the conclusions that are derived from it. (Maclaurin (1742). 
p. x) 

In the first chapter Maclaurin presents the kinematical model of 
fluxions. Motion. space and velocity are given as non-problematic primitive 
notions. The fluxion is defined as . the velocity with which a quantity flows. 
at any term of the time while it is supposed to be generated' (Maclaurin 
(1742). p. 57). The reference to the kinematical model cannot be analysed 
any further: it is this intuitive reference that. according to Maclaurin. gives 
an ontological basis to the calculus. However. in order to reduce the 
calculus to Archimedean geometry. it is necessary to give a geometrical 
representation of the kinematical model of fluxions. Maclaurin tries to 
associate with the velocity a finite proportional geometrical quantity 
employing the following operational definition: 

The velocity with which a quantity flows. at any term of the time while it is 
supposed to be generated. is called its Fluxion. which is therefore always measured 
by the increment or decrement that would be generated in a given time by this 
motion. if it was continued uniformly from that term without any acceleration or 
retardation. (Maclaurin (1742). p. 57) 

This is equivalent to defining the • measure' of y'( t) as y'lt)~t: a procedure 
that involves circularity. 17 Nonetheless. this definition was quite common 
in the seventeenth and early eighteenth centuries. 

After these definitions Maclaurin introduced four axioms (two on 
accelerated and two on . retarded' motion) which expressed the funda­
mental properties of motion and velocity: 

Axiom I 

The space described by an accelerated motion is greater than the space which 
would have been described in the same time. if the motion had not been 
accelerated. but had continued uniform from the beginning of the time. 

Axiom II 

The space described by a motion while it is accelerated. is less than the space which 
is described in an equal time by the motion that is acquired by that acceleration 
continued uniformly. 
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Axiom III 

The space described by a retarded motion is less than the space which would have 
been described in the same time, if the motion had not been retarded, but had 
continued uniform from the beginning of the time. 

Axiom IV 

The space described by a motion while it is retarded, is greater than the space 
which is described in an equal time by the motion that remains after that 
retardation, continued uniformly. (Maclaurin (1742), p. 59) 

While the operational definitions provide a geometrical representation of 
kinematical magnitudes, the axioms allow the inequalities between the 
kinematical magnitudes to be formulated. 18 All the proofs in the first book 
of Maclaurin's Treatise o/Fluxions (1742) resemble in structure the method 
of exhaustion in so far as they prove the impossibility of an inequality 
between two geometrical magnitudes. Maclaurin is extremely prolix and 
sometimes almost unreadable because he compels himself to adhere 
strictly to the indirect geometric proofs even when he is treating advanced 
topics. Only in the second book is the' geometry of fluxions' abandoned in 
favour of the • calculus of fluxions'. Here Maclaurin introduces the 
notation and the algorithm of Newton's' De quadratura' (1704c). But 
now we know that it would be possible to retranslate all the theorems into 
the kinematic style of the first book: 

The evidence of the method had been disputed, and objections had been made to 
the number of symbols employed in it, as it might serve to cover defects in the 
principles and demonstrations. In order to obviate any suspicions of this kind, we 
endeavoured to describe it in a manner that might represent the theorems plainly 
and fully, without any particular signs or characters, that they might be subjected 
more easily to a fair examination. (Maclaurin (1742), p. 575) 

Maclaurin always refers the reader to articles in the first book, in order to 
show that the symbolic results of the calculus are interpretable in terms of 
kinematical magnitudes. For instance, when in the second book he proves 
Taylor's theorem (pp. 600-II) he refers the reader to article 255 where 
he tried to prove by geometry that in the increment of a fluent can be 
. distinguished' a . part which measures the first fluxion', '! of that which 
measures the second fluxion of the ordinate, ! of that which measures its 
third fluxion, i; of that which measures its fourth fluxion, and so on'. 

Maclaurin's foundation of the calculus of fluxions on the kinematical 
model of fluxions met with a very favourable reception amongst British 
mathematicians. Criticisms of Maclaurin concerned the tediousness of his 
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style and nobody tried to reproduce the lengthy proofs of the Treatise of 
Fluxions (1742): however, since 1742 almost all the fluxionists accepted 
Maclaurin's rejection of infinitesimals. 

Maclaurin's Treatise of Fluxions systematized ideas deeply rooted in 
British science. First of all, it made it possible to understand the unity 
which existed between the branches of mathematics: there was no need to 
choose between conflicting methods. Everything could be reduced to a 
common field: a kinematic geometry based upon our intuition of motion, 
time and velocity. Secondly, Maclaurin's Treatise of Fluxions was in accord 
with the classicism of British scientists; it was often repeated that the' new 
analysis' was just a generaliza~on of 'Archimedes' method', but nobody 
had tried to show in detail how it was possible to apply the 'antient 
geometry' not only to the determination of the tangent of a parabola but 
to the brachistocrone or to Taylor's theorem. Lastly, the need to provide an 
objective reference to the calculus was satisfied. The theorems of the 
calculus did not deal with' fictions' or 'ghosts of departed quantities' but 
had a kinematic meaning: as Newton wrote in 'De quadratura' (1704C) 

the fluents and fluxions 'have an existence in nature'. 19 
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THE TEXTBOOKS ON FLUXIONS 

(1736-5 8) 

IN THE two decades which followed the dispute with Berkeley the calculus 
of fluxions was given shape in a number of 'treatises '. We have already 
looked at the best achievement of this generation of textbooks, Maclaurin 
(1742). In this chapter I have grouped together the other treatises. The 
first thing which strikes one about them is their quantity rather than their 
quality. It has been possible to estimate that from 1736 to 1777 about 
18000 copies of treatises on fluxions were sold in Great Britain. This 
situation contrasts sharply with the first three decades of the century, in 
which the calculus of fluxions was known to very few mathematicians. It 
was about the middle of the century that the world of 'philomaths' and, 
perhaps, some students in the military academies and universities began 
to practise with Newton's dots. The form the calculus would take in the 
second half of the eighteenth century very much depended upon the period 
covered in this chapter. 

4.1 Teaching the algorithm of fluxions 

The flood of controversial pamphlets on foundations published in the years 
1734-6 (see chapter 3) was followed by an intense production of 
'textbooks' on the calculus of fluxions. They were intended for beginners, 
as Hayes (1704), Ditton (1706) and Stone (1730) had been: the reader 
was introduced to the notation, rules and application of the calculus. The 
only requisite was a knowledge of algebra (but not of series) and geometry 
(with or without trigonometry). It is remarkable that almost all the 
textbooks on fluxions were published between 1736 and 1758. These 
works completely superseded their early eighteenth-century predecessors 
(with the exception of course of Newton's 'De quadratura' (1704c) and 
'De analysi' (1711 b)). The teaching and the 'image' of the calculus were 
to a great extent shaped in these twenty-two years. It is through the 

55 
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treatises on fluxions published in this period that Newton's mathematical 
work was reinterpreted and systematized: as a result it is possible to 
identify in the second half of the eighteenth century a fluxional school 
which based its teaching on an homogeneous set of textbooks. 

In fact from 1736 to 1758 twelve textbooks on fluxions were published: 
those by Hodgson (1736). Muller (1736). Newton (1736). Simpson 
(1737) and (1750C). Blake (1741). Maclaurin (1742). Emerson (1743). 
Rowe (1751). Rowning (1756). Saunderson (1756a). Lyons (1758). In 
addition. Martin (1739) and Simpson (1752) had chapters on fluxions. 1 

Some of these were reissued several times during the eighteenth century 
and up to the 1820S. After 1758 only three new treatises on fluxions were 
published: Holliday (1777). an elementary introduction which was not 
reissued; Vince (1795). which was an editorial success; and the sloppy 
Dealtry (1810). Hutton (1798. 1801) had a section on fluxions. which 
was extended in a third volume for the sixth edition of 181 I with the 
assistance of Olynthus Gregory. 

The Doctrine of Fluxions (1736) by James Hodgson (1672-1755) was 
one of the first works intended for teaching in which the programme. 
derived from the Berkeley controversy. of distinguishing between the 
differential and the fluxional calculus was adopted. Hodgson wrote: 

The Design of publishing the following Treatise. is to introduce the true Method of 
Fluxions. most of the Books that have hitherto appeared upon that Subject having 
in them little more than the Name. the Principles upon which they have proceeded 
being the same with the Differential Calculus; so that by calling a Differential a 
Fluxion. and a second Differential a second Fluxion. &c. they have so confusedly 
jumbled the Methods together. that People. who have not been thoroughly 
acquainted with them. have been led into many Mistakes: For although the way 
of Investigation in each be the same. and both center in the same Conclusions. yet 
whoever will compare the Principles. upon which the Methods are founded. will 
find that they are very different. (Hodgson (1736). 2nd edn .. p. v) 

Hodgson kept to Newton's 'De quadratura' (I 704c) as. in his view. it was 
the work where the' true Method of Fluxions' was to be found: it is ironic 
that in the same year a treatise by Newton appeared in which infinitesimals 
were employed. 

This treatise was The Method of Fluxions and Infinite Series (Newton 
(1736»). a translation by John Colson (1680-1760) of a manuscript in 
Latin written in about 167 I. It was often lamented that the world had had 
to wait so many years to see Newton's masterpiece on fluxions. It is 
astonishing to realize that publication sixty years beforehand would have 
changed the history of the calculus and would have avoided for Newton 
any controversy over priority. In 1736 all the results contained in 
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Newton's treatise were well known to mathematicians. However, it was 
too concise for a beginner, and Colson added almost 200 pages of 
explanatory notes. His commentary contributed to the establishment of a 
kinematical approach to the problem of foundations. In his explanatory 
notes Colson presents the 'geometrical and Mechanical Elements of 
Fluxions'. He writes: 

The foregoing Principles of the Doctrine of Fluxions being chiefly abstracted and 
Analytical. I shall here endeavour, after a general manner, to shew something 
analogous to them in Geometry and Mechanicks: by which they may become not 
only the object of the Understanding, and of the Imagination, (which will only 
prove their possible existence) but even of Sense too, by making them actually to 
exist in a visible and sensible form. (Newton (1736), p. 266) 

Colson was convinced that by using moving diagrams it is possible to 
exhibit' Fluxions and Fluents Geometrically and Mechanically [ ... ] so as to 
make them the objects of Sense and ocular Demonstration' (Newton 
(1736), p. 270). The motivation for using the geometrical and mechanical 
elements of fluxions is clearly that of guaranteeing an ontological basis to 
the calculus; in fact: 

Fluents, Fluxions, and their rectilinear Measures, will be sensibly and mechanically 
exhibited, and therefore must be allowed to have a place in rerum natura. (Newton 
(1736), p. 271) 

Colson's approach to the calculus is representative of a whole generation 
of British mathematicians: his 'sensibly exhibited rectilinear measures' of 
fluxions are a naive anticipation of Maclaurin's kinematic definitions of the 
basic concepts of the calculus. 

The need to render Newton's original works accessible to 'beginners' 
was also the motive behind John Stewart's (d.1766) translation and 
commentary of 'De analysi' (17 lIb) and 'De quadratura' (I 704c) 
published in Newton (I 745). It seems that the English editions of Newton's 
works on fluxions turned out to be profitable, since in 1737 there appeared 
Newton (1737), a pirated edition of the manuscript 'de methodis', already 
translated by Colson as Newton (1736).2 A Mathematical Treatise by John 
Muller (1699-1784) was published in 1736 and translated into French in 
1760. A first part devoted to conic sections was followed by a fairly simple 
textbook on the application of the calculus to the study of 'curves' 
(including maxima, minima, curvature) and to mechanics (centres of 
gravity and oscillations, pendulums, projectiles) but not to geodesy or 
physical astronomy. Another attempt to popularize fluxions was An 
Explanation of Fluxions (1741) by Francis Blake (1708-80). This short 
work was highly regarded for its rigour. Simpson declared his debt to Blake 
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in the Preface to his treatise (1750c) and the Explanation was reprinted in 
1763 and 1809. 

The treatises reprinted most were William Emerson's The Doctrine 0/ 
Fluxions (1743; 2nd edn. 1757; 3rd edn. 1768; 4th edn. 1773), Thomas 
Simpson's The Doctrine and Application o/Fluxions (1750C; 2nd edn. 1776; 
3rd edn. 1805; 4th edn. 1823) and John Rowe's An Introduction to the 
Doctrine 0/ Fluxions (175 I; 2nd edn. 1757; another? 1762; 3rd edn. 
1767; 4th edn. 1809). Up to the beginning of the nineteenth century these 
were studied more than Maclaurin's Treatise 0/ Fluxions (1742; 2nd edn. 
18o I), which cannot be considered a textbook for beginners, and perhaps 
even more than the works of Newton. 

Simpson (1750c) is certainly the most advanced. It is divided into two 
volumes. The first one covers the subjects usually found in the other 
treatises and can be considered by itself as an elementary treatise (the 
structure should be predictable: a chapter on foundations, one on notation 
and the rules of differentiation and integration by power series, and a 
sequel of applications to geometry and mechanics). The second volume 
goes much further: of particular value are section von Cotes's integrals 
and section x on the attraction of spheroids (see appendix A.2). Emerson 
(1743) also contains advanced subjects (see appendix A. I): in 300 pages 
it covers a great variety of problems.3 Rowe (175 I) tried to supply an 
easier work. He confined himself to the simplest applications of the 
calculus (see appendix A.3). In the third and last part, devoted to the 
solution of 'miscellaneous questions', Rowe refers the reader for more 
advanced problems to Hayes (1704), Ditton (1706), Stone (1730), 
Hodgson (1736), Muller (1736), Newton (1736, 1737), Maclaurin 
(1742), Emerson (1743), Newton (1745), Simpson (1750C) (and in the 
third edition published in 1758 also to Saunderson (I756a) and Lyons 
(1758)). 

The treatises by Rowning (1756), Saunderson (I756a) and Lyons 
(1758) concluded the period taken into consideration in this chapter. We 
have already come across Saunderson's treatise, which was read in 
Cambridge in the I730s. Rowning's and Lyons's treatises answered the 
same purpose as Rowe (175I), that of simplifying Emerson (1743) and 
Simpson (1750c). 

All these treatises, however advanced they may have been, did not 
introduce the student to the calculus as a theory (this was generally the 
case in, for instance, treatises on plane geometry or conic sections), but 
rather explained to him how to employ in geometry and mechanics a set 
of rules established in a first concise section. The only exception is Colin 
Maclaurin's Treatise o/Fluxions (1742) which, as we know, was so deep on 
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the 'kinematical axiomatization' of the calculus and on methodological 
questions. This peculiarity of Maclaurin's work was generally criticized as 
a drawback for teaching purposes and as the cause of its failure on the 
market for science books. For instance, we find Francis Blake writing to 
Thomas Simpson in 1741 about his forthcoming An Explanation of 
Fluxions (1741): 

But should not we wait, think you, for a Sight of Mr. Maclaurin's Work, which you 
say he is about publishing? I have no Apprehension that he will interfere with me 
for the Reason given in my Introduction: beside I remember to have seen several 
Sheets ofit.long ago, and ifhe has'not altered his method, I dare say he addresses 
himself only to great Mathematicians. He begins with a tedious Account of 
Archimedes's Manner of Reasoning in Mathematics; after which he lays down a 
vast Nr. of Lemmas concerning the Nature of Motion; and the Method of 
Demonstration used throughout is (as well as I can judge) an exact copy of the 
ancients. 4 

The reply from Simpson was encouraging: 

I am confident that a much plainer book may be wrote on ye Subject then his 
[Maclaurin's], and that an easy Explication of ye Theory [ ... ] will be of much 
greater use to a beginner than both those large volumes. 5 

In fact Blake and Simpson were right in predicting. that Maclaurin's 
technical Treatise of Fluxions (1742) could not meet the demand of easier 
presentations of Newton's calculus. In 1743 Maclaurin, writing to Sir 
Andrew Mitchell, observed: 

I see to day a treatise of fluxions advertised 5 sh. in sheets, the author not named, 
sold by WIn Innys [probably Emerson (1743)]. Ifear my book will hardly clear itself. 
(Colin Maclaurin to Sir Andrew Mitchell, 31 March 1743, in Maclaurin (1982), 
p. IOI) 

After a month he added: 

I am not surprised that my book has not sold fast, and my Ambition or expectation 
as to that is not high. I have a sum to pay the printers here still of about 80 L. 
which they are pushing for, but I am to postpone the payment, if I can at a meeting 
we are to have to morrow. (Colin Maclaurin to Sir Andrew Mitchell,s April 1743, 
in Maclaurin (1982), p. 102) 

Even though Maclaurin's geometric method was not always adopted, 
his foundation of the calculus on kinematics was accepted by the other 
textbook writers. In all these textbooks the reader was introduced in a 
preface or first chapter to the kinematic meaning of the concepts of the 
calculus: here Maclaurin was followed as the authority on these 
foundational aspects. Then the calculus of fluxions was briefly treated as 
a set of simple rules (baSically the rule of differentiation of xy, the chain 
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rule, the integration of xn and of x + y and integration by parts). The 
notation was strictly that of Newton. Even though Newton's approach 
might have suggested the concept of a functional dependence of variable 
quantities upon time, a functional notation (such as f(t)) was not 
explicated. The rest of the textbook was taken up with the applications of 
the calculus. 

Fluxional textbooks were analytical in the sense that they were all 
concerned with the use of an algorithm, which was however safely 
grounded on kinematical concepts. The calculus of fluxions was never 
presented in the treatises as a purely mathematical subject: it was not 
conceived as a universal language (like algebra) or as a systematic theory 
(like geometry). The calculus was the language of continuously varying 
magnitudes and was immediately applied to the study of the universe of 
flowing quantities. In a textbook on fluxions there were only two purely 
mathematical chapters: one on series and another on fluxional equations. 
Series were conceived as a part of algebra and they were included in a 
fluxional treatise because all the techniques of integration (with the 
exception of Cotes's integrals which were sometimes used) depended upon 
power series. Even in the best textbooks, such as Simpson (17Soc), 
fluxional equations did not receive a decent treatment. Rather than being 
given a general theory of integration, like the one to be found in Euler's 
Istitutiones Calculi Integralis (1768-70), the reader of Simpson (I 7Soc) had 
just fifteen disconnected examples of first order fluxional equations to study. 

However, the level of the textbooks on fluxions was not representative 
of the contemporary researches on foundations of Bayes, Robins and Jurin 
(see chapter 3. section 3.3) and of the researches of Maclaurin and 
Simpson (see chapter S). The reasons why the level of textbooks was so 
much poorer than that of research works are to be found in a study of the 
relationships between textbook writers and their readers and editors. It 
seems that in the 1 730S and 1 740S there was an increase in the number 
of potential readers of introductory works on the Newtonian calculus who 
were, however, not in the position to appreciate such an advanced 
treatment as that offered by Newton or Maclaurin. 

4.2 Textbooks on Ouxions and the science books trade 

Several of the textbooks mentioned in the last section were reissued. In 
particular between 1736 and 1777 we have calculated that twenty-four 
editions of textbooks were completely devoted to the calculus of fluxions. 6 

The problem naturally arises of understanding the reasons for this 
increasing interest in a quite technical aspect of Newtonian science. In 
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order to find a plausible explanation I will concentrate on the authors of 
treatises on fluxions. their readers. and their editors. 

The main characteristic which distinguished the authors of the treatises 
on fluxions published in the period 1736-58 from their predecessors. such 
as Hayes or Stone. was that they were connected in one way or another 
with universities or military academies: that is. they were professors of 
mathematics or they worked merely as tutors or coaches. The only 
exceptions were Francis Blake (1708-80) and William Emerson 
(1701 -82). Blake was an amateur. perhaps a student of Thomas Simpson. 
who devoted himself to natural philosophy: he contributed two papers 
(1753) and (I 760) on the steam-engine in the Philosophical Transactions 
and was elected FRS in 1746. Emerson was taught at Newcastle and York. 
but. we are told in Bowe (1793). he learnt mathematics by himself when 
he was over thirty years old. He dedicated himself to teaching for a short 
period and with little success in Hurworth. Emerson was a professional 
textbook writer: he had a contract with John Nourse. the famous 
publisher. for whom he wrote several works on mechanics. mathematics 
and astronomy.7 

As we already know. Maclaurin was Professor of Mathematics at 
Edinburgh University. while Thomas Simpson taught at Woolwich.s 

Thomas Simpson (1710-61). the son of a weaver in Leicester. was one of 
the many self-taught mathematicians in the eighteenth century. At the 
beginning of his career he settled in Nuneaton. a village close to his 
birthplace. where he earned money as a fortune teller. His career was 
interrupted by an accident. and he was compelled to hide for a while. We 
find him. about 1735. in London married to an older woman. Simpson 
gained a reputation as a mathematician by answering some questions in 
the Ladies' Diary and by publishing A New Treatise of Fluxions (1737). In 
1743 he was appointed Master of Mathematics at the newly formed Royal 
Military Academy at Woolwich. The list of his works is impressive. The 
most important are The Doctrine and Application of Fluxions (1750c). 
Mathematical Dissertations (1743) and Miscellaneous Tracts (1757). The 
first is one of the best textbooks on fluxions. even though not comparable 
with Maclaurin (1742). The second contains a remarkable treatment of 
the attraction of spheroids. while the third is mainly concerned with 
physical astronomy: the precession of equinoxes. the orbit of comets. the 
motion of the Moon's apogee. 

Muller (1699-1784) too was at Woolwich. from 1741 as Chief Master 
(later as Professor of Fortification and Artillery) of the Royal Military 
Academy. Francis Holliday (1717-87) was head-master at Houghton 
Park. Retford. Nicholas Saunderson (1682-1739) and John Colson 
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(1680-1760) occupied the Lucasian Chair at Cambridge. John Colson, 
before his appointment in Cambridge, was teacher of mathematics of Sir 
Joseph Williamson's Mathematical School at Rochester. His concern with 
mathematical education is testified by his commentary of Newton (1736). 
He also contributed to the edition of Saunderson (1740) and began a 
translation (1801) of Agnesi's Istituzioni Analitiche.9 John Rowning 
(I 700-7 I) was educated in Cambridge; he gave lectures on natural 
philosophy in Cambridge and London, and was head-master of the 
Spalding Gentleman's Society from 1759 to 1771. In the I730S he began 
publishing the first parts of a successful Compendious System of Natural 
Philosophy (1744, 1745). Israel Lyons (1739-75) lived in Cambridge, 
Oxford and London. In 1762-4 he delivered in Oxford a course of lectures 
on botany. His knowledge of mathematics was appreciated, since he 
worked several times for the Nautical Almanac and, as a cartographer, for 
the Board of Longitude. In 1773 he was the astronomer in the polar 
expedition of C. J. Phipps. John Stewart (d.I766) was Professor of 
Mathematics in Marischal College, Aberdeen, while James Hodgson 
(1672-1755) was Flamsteed's assistant at Greenwich from 1696 to 1702. 
He taught mathematics in London, succeeding to John Harris (see chapter 
I, section 1.2) at the Marine Coffee House, and in 1709 he became Master 
of the Royal Mathematical School at Christ's Hospital. 10 

For whom were the treatises on fluxions intended? The first and most 
natural answer is that Simpson's or Colson's readers were their students, 
or students in other academies or universities. A confirmation of this is the 
title of Simpson's Select Exercises for Young Proficients in the Mathematicks 
(1752), a widely used slim volume of exercises in which we also find a 
short treatment of fluxions; more ambiguously, in the preface Simpson 
gives methodological instructions to . the learners'. II The mathematical 
treatises which appeared around the middle of the century were generally 
addressed to 'learners' or . beginners'. Only with Vince (I 795) and Dealtry 
(1810) do we have treatises on fluxions • designed for the use of students 
in the Universities'. 

Muller indicated in the title pages of his Treatise Containing the Elementary 
Part of Fortification (1746), Elements of Mathematics -(1748), Treatise 
Containing the Practical Part of Fortification (I 755) and Treatise of Artillery 
(1757) that these were 'for the Use of the Royal Academy of Artillery'_ But 
students in the Royal Naval Academy at Portsmouth, in Woolwich, and 
later in Sandhurst numbered only a few hundred (see chapter 8). Muller's 
and Simpson's successful publishing careers could not have been based on 
their students_ Furthermore, it does not seem plausible that fluxions were 
taught in an eighteenth-century British military academy_ The most that 
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could be achieved, as is well shown by the output of Charles Hutton 
(1737-1823), one of the professors at Woolwich, was practical en­
gineering and ballistics. '2 Indeed. Muller predicted in the preface to his 
Treatise Containing the Practical Part of Fortification (1755), see p. vii. that 
some of his readers 'may not understand algebra'. It is therefore probable 
that the reference to the Royal Military Academy in Muller's works had the 
role of giving his volumes a prestigious gloss. 

A more interesting market was to be found in Cambridge. With the 
establishment in the 1740S of the Senate House Examination. the system 
of selecting students at Cambridge was given a clear mathematical basis. 
It is difficult to trace the history of what was to become the Tripos Exam. 
The first Tripos lists were published in 1747. It seems that, at the 
beginning. the exam was oral. and it was only in the I 770S that written 
answers were required. However, it was almost completely a mathematical 
exam, and we have evidence that students were asked to solve problems 
of mechanics and fluxions.IJ 

This situation was not representative of other universities (especially 
Oxford where mathematics was hardly touched on); it became a peculiarity 
of Cambridge which was regretted by some: 

Sir, College, Cambridge, June 30, 17 S6 

Mathematics is the standard, to which all merit is referred; and all other 
excellencies, without these, are quite overlooked and neglected: the, solid learning 
of Greece and Rome is a trifling acquisition; and much more so, every polite 
accomplishment: in short, if you will not get all Euclid and his diagrams by heart, 
and pore over Saunderson 'till you are as blind as he was himself, they will say of 
you, as in the motto of one of your late papers, actum est! ilicet! peristi! . tis all over 
with you! you are ruined! undone! [ ... ] And, indeed, there seems to be a strong 
analogy between the inclemency of the weather attacking our bodies, and the 
storm of affiictions which batter our minds. 14 

So 'B.A.' wrote in The Connoisseurs. 
The number of students at Cambridge at that time was under 2000: the 

maximum figure. approximately 2 I 50. was reached at the beginning and 
at the end of the century. Some of these students might well have been 
interested in becoming wranglers: John Jebb. second wrangler in 1757, 
remembers that for the Tripos the students were requested to solve 
problems taken from 'the fluxional treatises of Lyons, Saunderson, 
Simpson. Emerson. Maclaurin and Newton' (Wordsworth (1877), p. 50) 
In fact these works (with the exception of Maclaurin (1742) and Newton 
(1736)) were conceived more as exercise texts rather than as treatises: they 
enabled the reader to apply a concise set of rules to a variety of problems 
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in geometry and mechanics. The fact that the Tripos Exam was introduced 
in the 17 40S and the increase in the publication of mathematical treatises 
in this same period may be connected. These treatises on fluxions were 
well suited for students preparing an exam. 

It is difficult to say how many students read treatises on fluxions and 
how advanced the average knowledge of mathematics was. The extant 
accounts are extremely contradictory: some, like' B. A. ' and Jebb, describe 
Cambridge as a household of mathematicians, but we have recollections of 
would-be wranglers who considered the extraction of a square root to 
three decimal places to be a . rather severe' test (Wordsworth (1877), 
p. 52). It is probable that the situation varied: many did not concern 
themselves with mathematics at all (these many idlers were called' oi 
polloi 'j, but some did. In the last quarter of the century a numerous group 
of mathematicians was connected in one way or another with Cambridge: 
e.g. Samuel Vince (1749-1821), James Wood (1760-1839), Edward 
Waring (1734-98), John Rowning (1700-71), George Atwood 
(1746-1807), Francis Maseres (1731-1824), Nevil Maskelyne 
(I 732-18II), William Frend (1757-1841), John Brinkley (1763-1835), 
Henry Cavendish (1731-1810) and Robert Woodhouse (1773-1827). 
Self taught mathematicians, so typical in the first half of the century, were 
decreasing, while the group of academically trained mathematicians was 
growing. 

The Scottish universities were another possible market for fluxional 
treatises. Within the framework of the humanistic education provided in 
Scotland mathematics may not have been given the same importance as in 
Cambridge. The adoption of a more harmonious approach meant that 
mathematics and natural philosophy were taught together with the moral 
sciences and philosophy. As Richard Olson has shown in his (1971), a bias 
toward geometrical methods certainly characterized the universities of the 
Scottish Enlightenment and may have hindered the study of the 
calculus. 15 

A different group of people who might have been readers of treatises on 
the calculus is to be found in P. J. Wallis (1976), where 4500 
. mathematicians' active between 1701 and 1760 are classified, including 
mathematics teachers, instrument makers, land surveyors, etc. It would be 
interesting to know to what extent a mathematical preparation was 
required for the professions connected with navigation, military and civil 
engineering, land surveying, cartography, and so on. Rather than a 
professionalization of mathematics (in Great Britain this process did not 
take place until the nineteenth century), there may have been a 
. mathematization' of several professions. 
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In eighteenth-century Great Britain there was a widespread interest in 
mathematics which encompassed also amateurs: the famous 'philo­
maths' .16 We have already seen that itinerant mathematics teachers and 
demonstrators of experiments attracted a numerous public in London and 
in the provinces at the beginning of the century. This phenomenon was 
accompanied by the writing of simple introductory works on natural 
philosophy. As I have already remarked. the calculus of fluxions was too 
technical a subject to attract the interest of this kind of public. But we have 
to consider that periodicals such as the Ladies' Diary contributed towards 
extending the interest in m~thematics, and as the century progressed the 
readership of mathematics texts became more numerous. In the 1 720S the 
'philomaths' gathered together at the Spitalfields Mathematical Society 
(1717). the Spalding Gentleman's Society (1717). the Manchester 
Mathematical Society (1718) and the Northampton Mathematical Society 
(1721). It is known that other mathematical societies existed at York, 
Lewes, Wapping and Oldham (see Howson (1982), p. 258n).17 It is 
interesting to note that fluxions were almost absent from the answers 
published for the Ladies' Diary before 1730. It seems that only in the 1730S 
the' philomaths' learnt to use the calculus. The fact that there were these 
large numbers of 'philomaths', whose delight was puzzle-solving, may 
well explain why the treatises on fluxions were given the form of exercise 
texts. This is perhaps the best clue to understanding' the increase in output 
of introductory works on fluxions in the 17 30S and 1 740s. 

It was around the middle of the century that the market for science 
books reached its highest point of expansion. A general increase in readers 
of science books. together with a specialization on the part of the habitues 
of coffee houses and mathematical societies. may have convinced some 
publishers to issue volumes on mechanics, astronomy. instrument making 
and mathematics, 

Of course the great majority of science books were still very simple and 
unmathematical. Works such as Roger Cotes's Hydrostatical and Pneu­
mq.tical Lectures (1738), Rutherforth's System of Natural Philosophy 
(1748). John Rowning's Compendious System of Natural Philosophy (1744. 
1745) or Helsham's Course of Lectures in Natural Philosophy (1739). which 
did not require any mathematical preparation, were still the best-sellers, 
The list of subscribers to Rutherforth (1748). a ponderous work which 
consisted of lectures in mechanics, optics, hydrostatics and astronomy 
given in St John's College. Cambridge, totals more than 1000. Cotes and 
Rowning also lectured in Cambridge, while Helsham taught at the 
University of Dublin. Whereas at the beginning of the eighteenth century 
Keill and Whiston could combine theology, mathematics and astronomy. 
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as the century progressed popular lectures on natural philosophy and 
technical treatises became two completely separate types of science books. 
The existence of two different levels is revealed by the custom in popular 
science books of giving the references to technical treatises on mechanics, 
fluxions or physical astronomy in the footnotes. 18 

The most famous scientific publishers were all interested in publishing 
both popular and technical science books. The most important was 
perhaps John Nourse who had a contract with Emerson but also published 
quite a lot of Simpson's works (see appendix B). These books were 
expensive: e.g. in 1767 William Emerson's Method of Increments (1763) 
cost about seven shillings, Thomas Simpson's Doctrine and Application of 
Fluxions (1750C) cost twelve shillings, and Newton's The Method of 
Fluxions arid Infinite Series (1736) (with Colson's commentary) was fifteen 
shillings. However, a customer of John Nourse or Millar was probably 
prepared, for professional reasons or an addiction to science, to spend 
much more on clocks, telescopes, or air-pumps. We do not have any 
reliable data on sales figures: however, Feather (1981) found the 
agreements, correspondence and accounts of John Nourse. From these 
documents he was able to conjecture that the normal run of a Nourse 
edition was 1000. We know from Wallis and Wallis's (1986), pp. 221, 
317, that 750 copies of Simpson's New Treatise of Fluxions (1737) were 
printed for £1.00; that probably only 350 copies of Stewart's translation 
of Newton's 'De analysis' and 'De quadratura' (1745) were published, 
costing £ I II, and that nearly a half remained in 1747. Mathematical 
works were, then as nowadays, expensive and we should expect that a run 
of 1000 would have been excessive. If we take into consideration all the 
separate printings in the forty years following 1736, considering average 
runs of 750, we can estimate that in this period about 18000 copies of 
textbooks on fluxions were sold in Britain. 19 

In conclusion, it seems that the increase in the publication of treatises 
on the calculus after about 1735 is an aspect of a more general 
improvement in the market for science books. Both popularizations of 
natural philosophy and technical works were printed: publishers found it 
was in their interest to specialize at both ends of the market. The demand 
for a science education was strong in eighteenth-century Britain. It is 
difficult to assess the status of those who were interested in mathematical 
subjects. A small number were located in the universities (Cambridge, 
Oxford, Glasgow, Aberdeen, St Andrews, Edinburgh, Dublin); the authors 
of treatises on the calculus were often professors of mathematics, and some 
of their students might have been stimulated to study the fluxional 
calculus. In this period a class of academic mathematicians and engineers 
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was being educated in British universities; they were potential consumers 
as well as producers of science books. But there were also two other large 
groups who were interested in fluxions: professional men such as 
cartographers, instrument makers, land surveyors, etc., who needed a 
knowledge of mathematics. and the philomaths of the Ladies' Diary. 
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SOME APPLICA TIONS OF THE 

CALCULUS 

(1740 -3) 

THE PERIOD which followed the death of Newton did not witness only the 
disputes about foundations: with Maclaurin's Treatise of Fluxions (1742) 
and Thomas Simpson's Mathematical Dissertations (1743) and Miscel­
laneous Tracts (1757) we find the best examples of successful applications 
of the calculus of fluxions. As was typical in the eighteenth century, 
Maclaurin's and Simpson's mathematical works were motivated to a great 
extent by mechanics and physical astronomy. The Principia constituted a 
field of research rich in problems which demanded improvements in 
mechanical concepts as well as in mathematical techniques. 

Basically. all the natural philosophers who decided to accept the idea of 
universal gravitation had to cope with three great problems: the 
mathematical treatment of fluids, the determination of the shape of the 
Earth (and the motion of the tides), and the determination of the Moon's 
orbit and the perturbations of the planetary motions. I What lay behind 
these problems was the necessity of extending mechanics from the study 
of point masses to continuous bodies. Both the study of the Earth, 
conceived as a rotating fluid, and that of the Moon were connected with 
the development of the mechanics of rigid and fluid bodies. In order to 
develop this programme in mechanics and astronomy, eighteenth-century 
mathematicians were compelled to reshape the calculus. New concepts, 
such as the concept of a function of many variables, and new theories, 
such as the theory of partial differential equations and the calculus of 
variations, were created in this context. 

However, neither Maclaurin nor Simpson, notwithstanding the value of 
their researches, played an important role in the development of the 
eighteenth-century calculus. What they did was to extend the range of 
application of the original Newtonian calculus to its utmost limits. The 
British were unable to follow the developments of the continental calculus 
which was being profoundly modified. 

68 
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This chapter begins with two sections devoted to Maclaurin's and 
Simpson's studies of the attraction of the ellipsoids. The chapter is 
concluded by a section dealing with Clairaut's study of the shape of the 
Earth. The purpose of this example is to compare the new and powerful 
technique of line integration with the British use of multiple integrals in 
studying the shape of equilibrium of a rotating fluid mass. 

5.1 Maclaurin's study of the attraction of ellipsoids 

The subject of the prize awarded by the French Academie des Sciences for 
the year 1740 was one of the main problems of Newtonian science: the 
flow and ebb of the tides. On 5 September 1739 De Marain, Clairaut. 
Nicole, Reaumur and Pitot were appointed to the committee which had 
the duty to select the winner. On 27 April 1740 it was announced that the 
prize was to be shared amongst Leonhard Euler, Daniel Bernoulli, Antoine 
CavalIeri. one of the last Cartesians, and Colin Maclaurin, then Professor 
of Mathematics at the University of Edinburgh. The choice of this subject 
was particularly fortunate for Maclaurin since, as appears from his 
correspondence (1982), he had been engaged since 1735 in research 
concerning the shape of the Earth. This research originated from a paper 
by James Stirling (1738) published in the Philosophical Transactions for the 
year 1735. Another fortunate coincidence was that Clairaut was chosen 
as one of the examiners for the prize essays. Clairaut himself was 
interested, since the Lapland expedition of 1736 in which he participated, 
in the problem of the Earth's shape. Indeed, he was impressed by 
Maclaurin's essay and was prompted to correspond with him in the years 
1741-3 while preparing his Thiorie de la Figure de la Terre (1743).2 

We will not be concerned here with Maclaurin's prize essay (1741), 
which was reissued together with Euler's and Bernoulli's in the so-called 
Jesuit edition of the Principia, vol. 3 (1742),3 but rather with the improved 
and augmented version of it which can be found in chapter XIV of 
Maclaurin's Treatise of Fluxions (1742). 

As is well known, the mathematical study of the attraction of spheroids, 
of the shape of the Earth and of the tides dates back to Newton's Principia. 
Newton had assumed a fluid rotating mass as a model for the Earth and 
had aimed to prove that the form of relative equilibrium of such a mass is 
an oblate ellipsoid of revolution. Thus arose the problem of studying the 
attraction of points inside, on the surface and, possibly, outside a spheroid. 
In Proposition 90 of book I Newton found the attraction of a circular 
lamina on a point situated on the straight line orthogonal to the plane of 
the lamina and passing through the centre of the lamina. And in 
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Proposition 91 he showed how one could obtain the attraction of a solid 
of revolution on a particle placed on the prolongation of the axis of 
revolution. Another result was Corollary 3 to Proposition 91 in which it 
was shown that the total gravitational force on a particle placed in a shell 
bounded by two concentric, similar (Le. with the same ellipticity) and 
similarly situated ellipses is equal to zero. With this in mind one could 
reduce the problem of the attraction of a particle internal to an ellipsoid to 
the problem of a particle placed on the surface. From this follows also that 
in the interior of the ellipsoid the attraction varies directly as the distance 
from the centre. These results were used by Newton in the third book, 
Propositions 18-20. Newton assumed without proof that an ellipsoid of 
revolution is a form of equilibrium, and in order to find the ellipticity he 
introduced the following condition: the rotating fluid ellipsoid is in 
equilibrium when an equatorial and the polar infinitesimal canals balance 
each other at the centre. 

As can be seen, much was left to be answered. Apart from the problem 
of studying fluids and their hydrostatics, there was the problem of knowing 
exactly how a spheroid (to make things simpler an ellipsoid of revolution) 
attracts points on its surface and external points. Only the case of points 
on the axis of revolution and on the equator was solved in Newton's 
Principia (1687) and Cotes's 'Logo metria , (1717). Let us turn now to 
chapter XIV of Maclaurin's Treatise (1742).4 

After some introductory material (the geometry of the ellipse and a 
recapitulation of Newton's work in this field), Maclaurin states his first 
important theorem (Maclaurin (1742), article 634, pp. 524-5). Let us 
consider a particle P (see fig. 2) on the surface of a homogeneous ellipsoid 
of revolution and let us resolve the attraction into two components, one 
perpendicular to the axis and the other one perpendicular to the plane of 
the equator; then the former varies directly as the distance from the axis 
and the latter as the distance from the equator. If one calculates, following 
Newton and Cotes, the attractions at the pole and at the equator and uses 
Maclaurin's theorem, one can calculate the variation of attraction on the 
surface of the ellipsoid. 

In the proof of this theorem Maclaurin confined himself to geometrical 
methods. This means that he avoided the use of fluxions, fluents, algebra 
or series. Indeed Maclaurin begins the chapter by proving several 
propositions concerning the ellipse, and in the rest of the chapter one can 
find only extremely complicated geometrical constructions. However, it is 
quite evident that behind this there is the calculus. 

In fact Maclaurin considered the point P on the surface as the vertex of 
an infinity of infinitesimal cones in terms of which the ellipsoid was 
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Fig. 2 Prolate ellipsoid of revolution 

subdivided. He integrated once. and found the attraction of an arbitrary 
cone on the particle. twice. and found the attraction of an arbitrary' slice' 
(a section of the ellipsoid by a plane). and a third time in order to find the 
total attraction. Multiple integration in spherical coordinates one could 
say. 

Maclaurin had to use all his geometric inventiveness in order to reduce 
the attraction at P to known integrals. Let us consider fig. 3. which 
represents a section of two concentric oblate ellipsoids of revolution. AEBQ 
and aebq are two concentric ellipses of equal ellipticity; PL. parallel to the 
greater diameter. touches the interior ellipse at a; PK is equal and parallel 
to abo The angle fag is bisected by abo PF and PG are drawn parallel to af 
and ago respectively. Maclaurin shows (article 626) that PH+PI = 2ai. 
T,his equality can be used to relate the vertical component of the attraction 
at P to the attraction at the pole of the interior ellipsoid. which can be 
calculated following Newton's Principia, Proposition 91. 

It should be noted that Maclaurin is using a differential model of the 
ellipsoid. That is. the volume is subdivided into infinitesimal components. 
Maclaurin declared in the first lines of his Treatise that his work was 
motivated by the Berkeley controversy. In fact he devoted several chapters 
to foundations. and here, as we know. he tried to avoid infinitesimals and 
moments in order to base the calculus on ad absurdum geometrical proofs 
(see chapter 3. section 3-4). We find that, quite typically of eighteenth-
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Fig. 3 Section of two concentric oblate ellipsoids of revolution 

century mathematics. he forgot about that in the chapters dealing with the 
applications of the calculus. 

Just after his theorem on the attraction at the surface Maclaurin 
proceeds to study the shape of equilibrium of a rotating homogeneous fluid 
mass. He states the following necessary conditions of equilibrium. If a fluid 
mass is in equilibrium. then: 

(I) the resultant force at the surface will be perpendicular to the 
surface; 

(2) internal surfaces similar. similarly situated and concentric to the 
surface of the ellipsoid will be 'level surfaces at all depths'. that is the 
force will be perpendicular at these surfaces; 

(3) the polar and equatorial columns will balance each other at the 
centre; 

(4) columns drawn from an internal point to the surface will balance 
each other. 

Let us consider conditions (I) and (2). The first one is the plumb line 
principle as stated by Huygens in his Discours de la Cause de la Pesanteur 
1I690): at the surface the plumb line must fall perpendicularly. The 
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second one is more interesting. We can recognize here what we nowadays 
would call equipotential surfaces. At the 'level surfaces' the force is 
directed along the vector normal to the surface. Even though it would be 
excessive to see Maclaurin as a forerunner of potential theory, it cannot be 
denied that this extension of Huygens's principle was a promising step. 

Condition (3) is Newton's principle of balancing columns, while 
condition (4) is understood as an extension of Newton's principle to 
columns meeting at an arbitrary internal point. In fact Maclaurin 
understands the fourth condition as follows: given an internal point draw 
from it an infinitesimal column to the surface, then the pressure exerted by 
the column on the point is independent from the direction. 

Next comes the weak point in Maclaurin's treatment of forms of 
equilibrium. For the moment Maclaurin confined himself to homogeneous 
ellipsoids. He now aims to extend his analysis to cases in which the density 
is varying. He assumes that the density is varying according to various 
laws as a function of the radial distance from the centre. It was quite 
natural for him to take ellipsoids of revolution made up of similar and 
concentric shells of varying density. However, these ellipsoids, as 
Greenberg (1979) has pointed out, cannot be in hydrostatical equilibrium. 
The ellipticity of the shells has to vary as a function of density and 
Maclaurin did not realize this. 

Another important result is the following: 

Let us take two confocal ellipses and let them generate, revolving round their 
minor/major axis, two homogeneous ellipsoids of equal density. Let us take a point 
P on the prolongation of the axis of revolution (or of the plane of the equator), then 
the attractions of the two ellipsoids will be as their volumes. 

We have here a result concerning external points: a much more difficult 
case than internal points. The theory of confocal ellipsoids was later 
extended by Legendre and Laplace. James Ivory also contributed with a 
paper (1809) published in the Philosophical Transactions. The problem was 
of course that of extending Maclaurin's theorem to external points not 
situated on the prolongation of one of the axes. As in the case of level 
surfaces, Maclaurin was again touching on a theme of a certain importance 
for potential theory. 

5.2 Simpson's study of the attraction of ellipsoids 

Just one year after the publication of Maclaurin's Treatise of Fluxions 
(1742), Simpson included two essays dealing with the attraction of 
ellipsoids in his Mathematical Dissertations on a Variety of Physical and 
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Analytical Subjects (1743).5 He adopted Maclaurin's technique of slicing up 
the ellipsoid into infinitesimal 'wedges', but employed the calculus to 
perform the necessary multiple integrations. Thomas Simpson begins from 
this simple lemma (see fig. 4): 

Supposing AC perpendicular to AB, and that a Corpuscle at C is attracted towards 
every Point or Particle of the line AB, by Forces in the reciprocal duplicate Ratio 
of the Distances; to determine the Ratio of the whole Force whereby the Corpuscle 
is urged in the direction CA. (Simpson (I750c), II, p. 445) 

If we now consider a variable point D, and we put DA = x and CA = a, we 
will have that the horizontal component of the force at D (dP cos (j) will 
be proportional to ACjCD3 = aj(a2+x2)i: 

Therefore 

ax 

is the Fluxion of the whole Force, whose Fluent [ ... ] is = 

x 

a(a2 + X2)~' 

(Simpson (I750c), II, p. 446) 

Integrating, one finds that the total force has a horizontal component 
proportional to BAjl CA· CB). 

A second lemma allows one to calculate the attraction of an elementary 
'wedge' and reads as follows (see fig. 5): 
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Fig. 5 From Simpson (I750c), II, p. 454 

Supposing ADBbA to be a Cuneus of uniformly dense Matter, compriz'd by two 
equal and similar eliptic Planes ADBEA and AdbeA. inclin'd to each other, at the 
common vertex A, of either their first or second Axes, in an indefinitely small angle 
BAb: to determine the Attraction thereof at the Point A, supposing the Force of 
each Particle of Matter to be as the Square of the Distance inversely. (Simpson 
(I750c), II, p. 453) 

Let AB = a, BC = x, CD = y, sin (BAb) = d and y2 =fX-x2_gx2. Then we have 
Cc = d(a-x). 
But AD = ((a-x)2+fx-x2_gx2)( and, for the first lemma, 

DExCc 

ACxAD 

expresses . the Attraction of the Particles in the indefinitely narrow Rectangle 
DE· Cc', which Will be equal to 

2d(fJl: - X2 - gx2)~ 

((a- X)2 +fX_X2 _gx2)~ 

The . fluxion of the force to be found' will then be: 

2d(fx - X2 - gx2 )~x 

((a - X)2 + fx - X2 - gx2)~ 

(Simpson (I750c), II, p. 455) 
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But Ix-x2-gx2 = 0, when x = 1/1 +g = a, or x = o. Therefore, sub­
stituting: 

2d(lI +g)ax- (I +g)x2)fx 

2d(I +g)rxrx 

(a+gx)r 

2d(I +g)rxr )_1. 
--'-----;-1 "-'--( I + gx / a 'x = 

a' 

2d(I +g),x'a-' 1---+- - --- - + ... x. I I I ( I gx 3 (gX)2 3' 5 (gX)3 ) 
2 a 2'4 a 2' 4' 6 a 

Therefore, integrating from x = 0 to x = a: 

2d(I + 9)~a (.:.-.:.~ + ':'_3_ g2 _ ':'~g3 + ... ). 
3 52 7 2 '4 9 2 '4'6 

(I +g)ra = (I +gtY, therefore expanding (I +gt~ in powers of 9 and 
multiplying the two series: 

2dI (':' _ 2 . 4 9 + 2' 4 . 6 g2 _ ... ). 
3 3'5 3'5'7 

Now Simpson can study the attraction at the surface of the ellipsoid. As 
can be seen in fig. 6, he follows a technique very similar to Maclaurin's. 
Simpson considers two sections of the ellipsoids generated by two planes 
passing through Q and perpendicular to the plane of the meridian. It is easy 
to show that these two sections are two ellipses. Supposing them to revolve 
around an . indefinitely little' angle, they will determine two elementary 
. wedges'. Applying the preceding result Simpson can determine the 
attraction exerted by the two elliptical 'wedges', in the directions QH and 
Qh, respectively. The integration needed to find the attraction of the whole 
mass is performed as before by power series.6 

Reading Maclaurin and Simpson is interesting for us because it is 
possible to refute some widespread opinions about the fluxional school. It 
is often maintained that eighteenth-century British mathematicians were 
far behind the continentals because (I) they compelled themselves not to 
use infinitesimal techniques, and (2) they rejected . analysis' in favour of 
. geometry'. As far as the use of infinitesimals is concerned, we can see how 
both Maclaurin and Simpson had no problems in employing the 
infinitesimals, even though they spurned them at the foundational level. 
It is to be noted that, generally, they introduce the infinitesimal in a non-
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Fig. 6 From Simpson (I750c), II, p. 456 

kinematic way. This sharply conflicts with their foundations in terms of 
kinematic concepts. Furthermore, we can surely s~y that the use of 
. analysis' characterizes Simpson's Mathematical Dissertations (1743) to an 
extent which is sufficient to render the usual image of the fluxional 
calculus inappropriate to his work. The case of Maclaurin is more complex. 
His research on ellipsoids is included in the first book of the Treatise (1742), 
in which he did not employ the calculus. This was an epistemological 
choice. The integrations necessary for proceeding with the proofs 
analytically (we have seen some instances in Simpson) were easy for any 
good mathematician at that period. In fact, in the second book Maclaurin 
provided the integrals required for calculating the attraction at the pole 
and at the equator of an ellipsoid (Maclaurin (1742), pp. 722-6). It was 
easy for him to translate his . geometry of fluxions' into a . calculus of 
fluxions', but the methodological programme of the Treatise (I 742) 
consisted in showing that the calculus, even in its most advanced parts, 
was based on geometry. 

It is certain that Maclaurin and Simpson greatly extended the study of 
attraction of ellipsoids: they calculated the attraction of any internal 
particle of an homogeneous ellipsoid of revolution, Maclaurin knew that 
the potentials of confocal ellipsoids of equal density at points situated on 
the prolongation of the axes are related directly to their volumes. In 
treating fluid equilibrium Maclaurin made use of an interesting concept 
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which anticipates somehow that of equipotential surfaces. As far as I 
know, Maclaurin was the first one to study confocal ellipsoids, the first one 
who gave an exact calculation of the variation of attraction on the surface 
of an ellipsoid of revolution, and the first one who introduced the concept 
of level surfaces. 

Maclaurin's and Simpson's influences on British authors cannot be 
overestimated. After more than sixty years, in the chapter concerned with 
the shape of the Earth of John Robison's Elements of Mechanical Philosophy 
(1804) one could find Maclaurin and Simpson and not Laplace. But, how 
much influence was exerted by them on the continentals? Maclaurin was 
certainly very well known. His prize essay (1741) was available in Latin, 
while two copies of Maclaurin's Treatise (1742) were sent to France, one 
to the Academie and the other one as a complimentary copy to Clairaut; 
it was translated into French in 1749. As we will see below, Clairaut in his 
Theorie de la Figure de la Terre (1743) declared his debt to Maclaurin: he 
adopted level surfaces, calling them surfaces courbes de niveau and even 
adopted Maclaurin's geometrical proof of the variation of attraction at the 
surface of the ellipsoid. Also, d' Alembert, Lagrange and Laplace tributed to 
Maclaurin the merit of having introduced the concept of level surfaces and 
praised his geometrical methods. However, notwithstanding this unani­
mous appreciation, Maclaurin was soon superseded on the continent and 
became of little use for the researcher. Indeed already in 1743 with 
Clairaut's Theorie de la Figure de la Terre we find mathematical methods that 
render Maclaurin's and Simpson's works obsolete. That is, Clairaut was 
not basing his mathematical analysis only on multiple integration, but he 
used line integrals. In fact, Clairaut considered curvilinear infinitesimal 
canals internal to the fluid and integrated the force along these canals, 
finding what we nowadays would call the work. In John Greenberg's Ph.D. 
thesis (1979) there is a long section devoted to Clairaut's study of the 
shape of the Earth. Quite appropriately Greenberg aims at showing that it 
is in the context of applied mechanics and hydrostatics that Clairaut 
devised a new mathematical tool, line integration. 

In the 1730S and 1740S the continental mathematicians deeply 
transformed the calculus. It is in these years that we find some use of line 
integrals (especially in Clairaut), the first steps towards the calculus of 
variations (culminating with Euler's Methodus inveniendi in 1744), and 
later on partial differential equations (d' Alembert's vibrating string, for 
instance). These tools were for some reason outside the scope of the 
fluxionists. The British mathematicians, very often gifted mathematicians, 
were unable to develop the calculus as successfully as their continental 
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colleagues. In eighteenth-century British calculus the absence of im­
provements in a multivariate calculus is especially remarkable. It is the 
multivariate calculus (line integrals, partial differential equations and the 
calculus of variations) that allowed the continentals, from Clairaut to 
d' Alembert, from Lagrange to Laplace, to solve the basic problems of 
Newtonian science, such as the determination of the Earth's shape. 

Maclaurin and Simpson are therefore typical Newtonians. In the case 
considered in this chapter they successfully applied the geometrical tools 
of the Principia (1687), the integrals of 'De quadratura' (1704c) and 
Cotes's' Logometria ' (1717) to tackle the attraction of ellipsoids. Their skill 
in going so far with only the help of geometrical inventiveness catches the 
applause; in the same time the absence of multivariate calculus techniques 
renders them old fashioned mathematicians who could not participate in 
a period of the history of mathematics in which the calculus underwent a 
deep change. 

5.3 Remarks on the use of partial differentials in Clairaut's Thiorie de 
la Figure de la Terre 

Clairaut's Theorie de la Figure de la Terre was published in 1743. Its second 
part was explicitly based on Maclaurin:7 

I have decided to treat in detail the figure of homogeneous spheroids. and to 
abandon my method. as far as these spheroids, in order to follow the one which 
Maclaurin gives in his excellent Traite des Fluxions. This method seems to me so 
beautiful and profound. that I hope its insertion here will please my readers. 
(Clairaut (1743). p. 158) 

Nevertheless, Clairaut's work rendered obsolete that of both Simpson 
and Maclaurin since he employed mathematical concepts and techniques 
unknown to the fluxionists. We can see this, for instance, in the fourth 
chapter 'Maniere generale de faire usage du principe de l'equilibre des 
canaux de figure quelconque' (Clairaut (1743), p. 33). The 'principe' had 
already been given in the first chapter and states that a fluid mass will be 
in equilibrium when any infinitesimal canal either traversing the mass or 
returning to itself is in equilibrium. In the case of spheroids Clairaut thinks 
that the condition of equilibrium can be expressed as follows: 8 

In order that a fluid rotating spheroid, for which the law of gravity is given, can 
maintain a constant shape, it will be sufficient that an arbitrary channel, re­
entering to itself and placed in a meridian plane of this spheroid. is always in 
equilibrium, if one takes into account only the force of gravity and not the 
centrifugal force. (Clairaut (1743), pp. 14-15) 
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He then considers a section CEP (see fig. 7) of the spheroid, where P is 
the pole and C is the centre. Let ON be an infinitesimal canal lying on the 
plane of the meridian CEP. If the condition of equilibrium is satisfied, then 
the pressure exerted by ON is equal to the pressure exerted by any other 
canal terminated by 0 and N. Let CH = x, HS = y, Sr = dx and sr = dy. Let 
the 'force of gravity perpendicular to CP' be p, and let Q be the 'force of 
gravity parallel to CP' (Clairaut (1743), p. 35). Then' Pdy + Qdx will be the 
total effort of the small Cylinder Ss due to these two forces'. If the fluid is 
in equilibrium, the value of 

fPdy+Qdx 

will not depend on the path of integration. 
In treating the integrability of Pdy + Qdx, Clairaut says:9 

If one wished to use this quantity, in order to determine in finite terms the value 
of the weight of the channel ON, under the assumption that the curvature of this 
channel is given, one might begin eliminating y and dy from Pdy + Qdx; this 
differential would now have only x and dx, and it would be possible to integrate it 
after having completed the integral, that is after having found the necessary 
constant which would render the weight equal to zero; taking x equal to CG, and 
then x = CI, one would be able to determine the total weight of the channel ON. 
But since the equilibrium of the fluid requires that the weight of ON does not 
depend on the curvature of OSN, that is to say on particular values of y and x, it 
follows that Pdy + Qdx should be integrated Without knowing the value of x, that 
is to say it is necessary that Pdy + Qdx is a complete differentio.l (differentielle complette) 
as a condition for having equilibrium in the fluid. (Clairaut (1743), pp. 36-7) 
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Here we have a very good example of how continental mathematicians 
were beginning to apply a multivariate calculus to mechanics. Since the 
form of the canal ON is arbitrary, we cannot eliminate a variable: it is 
essential for Clairaut that both x and y should be considered as independent 
variables. The mechanical model of the 'rentrant' canals, much more 
general than that of the 'elementary wedges' employed by Maclaurin and 
Simpson. was not mathematically approachable without an understanding 
of a function of many variables and a partial differential. 

Clair aut was able to use in (1743) some results he had published in 
1740. He established that Pdy + Qdx is a 'differentielle complette' when 
dP Idx = dQ/dy (to the best of my knowledge nobody questioned the 
generality of this result during the eighteenth century). For' differentielle 
complette' Clairaut meant :[0 

a quantity whose integral is a function of x and y. ydx+xdy, (ydx+xdy)j 
2v/(aa+xy) are complete differentials, because their integrals are xy, v/(a2 +xy). 
(Clairaut (1743), p. 37n) 

While the symbol dP Idx (Le. our oP lax) is to represent" 

the differential (differentielle) of the function P, taken supposing only x as variable. 
(Clairaut (1743), p. 38n) 

Like Clairaut, both d' Alembert and Euler, who made fundamental 
contributions to fluid mechanics, were to employ a calculus of functions of 
many variables. It is at this level that an important distinction can be made 
between the fluxional and the differential calculus. It seems to me that the 
case of the study of ellipsoids shows that the fluxionists were able to 
employ analytical techniques in which the notion of infinitesimal and the 
principle of cancellation of higher order differentials occurred; i.e. they 
were prepared to use in the applications a calculus very similar to that of 
the early Leibnizians. However, they did not accept the mathematical 
techniques developed on the continent in the I730S which transformed 
the calculus of differentials into a calculus of multivariate functions. 



6 

THE AN AL YTIC ART 

(1755-85) 

THE PICTURE of the fluxional calculus that one can derive from the 
textbooks written for teaching purposes is not completely representative of 
the level and methodology of the research carried out by British 
mathematicians. It was not the kinematical method of fluxions but rather 
another tool, labelled vaguely as 'analytics', which was adopted by some 
of the most active fluxionists. Among them the most notable were: 
Thomas Simpson (1710-61), John Landen (1719-90) and Edward Waring 
(1736-98). 'Analytics' had a different meaning for each of the three: 
however, a general idea can be inferred from their works. 

, Analytics' was a calculus not immediately interpretable in terms of 
.geometrical or kinematical concepts. The use of symbolism was free from 
the constraints of interpretability: imaginary numbers, logarithms of 
negatives and so on were considered admissible. This freedom was not 
usual in eighteenth-century Great Britain. I The limits imposed by the 
kinematical conception of mathematical quantities were ignored because 
it was thought that the progress of the fluxional calculus was directly 
connected with the development of analytical methods. For instance, a 
formal use of series was considered fundamental: the analytical fluxionists 
were hoping to attain results by working algebraically on infinite series. 

The research on the continent was thought of very highly by the 
analytical fluxionists, and a genuine attempt was made to import 
continental methods. This early attempt of reforming the calculus was 
largely a failure. As we have seen in the previous chapter, the fluxionists 
continued to understand a fluent x as a single variable function x(t). 
'Taking the fluxion' was understood as differentiation as a function of t: 
in consequence only total differentials were handled. On the contrary, the 
continental calculus in the middle of the eighteenth century was centred 
upon objects such as partial differential equations. line integrals and 

82 
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variational techniques which could not be translated into the fluxionists' 
conceptual framework. 

The analytical researches of Simpson, Landen and Waring passed 
almost unnoticed by their fellow countrymen and by the continentals. It 
is easy to see why this happened if one compares the production of Euler 
or Lagrange with the modest contributions of the British. However, 
Simpson's papers on series (1759b) and 'isoperimetrical' problems 
(1756a) and (1759a), Landen's results on elliptic integrals (1772) and 
(I 775), and Waring's attempt to develop a multivariate calculus (1776), 
deserved to receive more attention in Britain: it was only by following their 
steps that the fluxionists 'could continue to be competitive, as they had 
been in the first half of the century with Stirling, Taylor, Cotes and 
Maclaurin. 

6.1 Simpson's methodology 

Thomas Simpson was one of the fluxionists who practised the analytical 
method. In his Doctrine and Application of Fluxions (1750c) he accepted 
Maclaurin's kinematical foundation of the calculus. But in the same work 
we find a hint of another approach: 

But, after all, the Differential Method [Le. Newton's methodus differentlalis] has one 
Advantage above that of Fluxions, which is, we are not there obliged to introduce 
the Properties of Motion. Since we reason upon the Increments themselves, and not 
upon the Manner in which they may be generated. 

It has been hinted above, that, though the Increments of Quantities are not, 
strictly, as the Fluxions, yet from them the Ratio of the Fluxions may be deduced; 
and it appears that the smaller those Increments are taken, the nearer their Ratio 
will approach that of FluXions. Therefore, if we can, by any Means, find the Ratio 
to which the said Increments, by conceiving them less and less, do perpetually 
converge, and which they may approach, before they vanish, nearer than any 
assignable Difference, that Ratio (called, hereafter, for Distinction Sake, the Ratio 
limiting that of the Increments) will be, strictly, that of the Fluxions. (Simpson 
(1750c), p. 152) 

Stating the dependence ofthe method of fluxions on the non-kinematical 
~ethod of finite differences was not that new: as we already know, Taylor 
had maintained this position. However, Simpson's non-kinematical 
approach to the fluxional calculus appeared provocative after Maclaurin. 
He had no intention of confining himself within the limited field of 
geometrically interpretable mathematics. Simpson had the 'foreign 
mathematicians' as models: 

I have chiefly adhered to the analytic method of Investigation, as being the most 
dlrect and extensive, and best adapted to these abstruse kinds of speculations. 
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Where a geometrical demonstration could be introduced, and seemed preferable, I 
have given one: but tho' a problem, sometimes. by this last method. acquires a 
degree of perspicuity and elegance, not easy to be arrived at any other way, yet I 
cannot be of the opinion of Those who affect to shew a dislike to every thing 
performed by means of symbols and an algebraical Process; since, so far is the 
sYlIthetic met/tad from having the advantage in all cases, that there are innumerable 
enquiries into nature, as well as in abstracted SCience, where it cannot be at all 
applied, to any purpose. Sir Isaac Newton himself (who perhaps extended it as far 
as any man could) has even in the most simple case of the lunar orbit (Princip. B. 3. 
prop. 28) been obliged to call in the assistance of algebra; whiclr he has also done, 
in treating of the motion of bodies in resisting mediums, and in various other 
places. And it appears clear to me, that, it is by a diligent cultivation of the Modern 
Analysis. that Foreign Mathematicians have, of late, been able to push their 
Researches farther, in many particulars, than Sir Isaac Newton and his Followers 
here, have done: tho' it must be allowed, on the other hand, that the same 
Neatness, and Accuracy of Demonstration, is not every-where to be found in those 
Authors, owing in some measure. perhaps. to too great a disregard for the Geometry 
of the Ancients. (Simpson (1757), Preface) 

Even though Simpson declared his appreciation of the analytical 
methods adopted by the continentals, he found it difficult to follow the 
recent developments of the calculus. For instance. in his papers (17s6a) 
and (I 7S9a) on isoperimetrical problems, he did not cite Euler's Methodus 

Inveniendi Lineas Cur vas (1744). Simpson's style is so clumsy that one is led 
to think that he did not even know Euler's work. His General Proposition 
reads as follows: 

Let Q, R, S, T, &c. represent any variable quantities, expressed in terms of x and y 
(With given coefficients), and let q, r, s, t, &c. denote as many other quantities, 
expressed in terms of x and y: It is proposed to find an equation for the relation of 
x and y. so that the fluent of Qq + Rr + Ss + Tt. &c. corresponding to a given value 
of x (or y), may be a maximum or minimum. (Simpson (1759a), p. 624) 

Here one cannot find either the notation or the concept of function which 
played so relevant a role in Euler's treatment of variational problems. 
However, in functional notation Simpson expresses the problem of finding 
the extremals of v[y(x)] = f: 2 F(x, y(x), y'(x))dx, and arrives at a General 

Rule, which can be understo~d as a fluxional version of Euler's equation: 

d 
Fy- dxFy' = o. 

Furthermore, he solved problems with side conditions with the method of 
. Lagrange' multipliers. These papers represent a step towards a general 
treatment of . isoperimetrical problems', which had received scarce 
attention in Great Britain. Only special cases, such as the brachistocrone 
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or the solid of least resistance, had previously been considered by British 
mathematicians. 

In addition, Simpson's work on series can be considered promising: for 
instance, in (1759b) he worked on series with complex coefficients. 
However, we cannot mention any important result achieved by Simpson 
in this field. But certainly the level of his researches on series is above the 
average. Sometimes in the history of mathematics, especially when a 
process of reform is taking place, new methodological approaches are as 
important as new results. And, from this point of view, it is important to 
notice the formal use of series, which characterizes Simpson's papers 
(1753) and (1759b) as well as the contributions on series in his books 
(1740) and (1743). In these works series are treated as algebraical 
expressions, independently from their 'numerical' interpretation (Le. 
complex numbers as well as divergent series are handled freely in the 
algorithmic procedures). As we will see in the next chapters, the formal use 
of series was to play an important role in the reform of British calculus. In 
fact, the early nineteenth-century reformers (e.g. Robert Woodhouse and 
the Analytical Society's fellows) adopted the 'Lagrangian foundation', 
developed by Lagrange in his Thiorie des Fonctions Analytiques (1797), 
according to which all the theorems of the calculus should be reduced in 
terms of algebraical manipulations with series. It is therefore interesting to 
find that some Newtonians worked with series developments following a 
methodology which was compatible with the Lagrangian foundation of 
the calculus. 

6.2 Landen's Residual Analysis 

John Landen (1719-90) was a land surveyor who lived in Northampton­
shire. 2 He was a friend and correspondent of Simpson. In his letters he 
showed a great interest in Simpson's analytical research. 3 Like Edward 
Waring, John Colson, Francis Maseres and Robert Smith, Thomas Simpson 
was a subscriber to The Residual Analysis (1764), Landen's chief work. 

In The Residual Analysis Landen tried to reformulate the principles of the 
calculus on a completely new basis. His purpose was to base the calculus 
upon a purely algebraical procedure in order to avoid both Newton's 
fluxions and Leibniz's differentials: 

In the application of the Residual Analysis. a geometrical or physical problem is 
naturally reduced to another purely algebraical: and the solution is then readily 
obtained. without any supposition of motion, and without considering quantities 
as composed of infinitely small particles. (Landen (1758), p. 5) 
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Landen did not oppose the calculus of fluxions on the grounds that it 
was faulty. but because it was just a limited case of a more general theory: 

If any thing can be said by way of objection to the fluxionary method. it is. that the 
new principles on which it is founded. though accurate. are not the genuine 
principles of Analytics. for the improvement of which. those principles were 
borrowed from the doctrine of motion: And that. although such borrowed 
principles may enable us to give very concise solutions to certain problems. yet 
perhaps we must not expect to bring the Analytic art to its utmost perfection. 
otherWise than by proceeding upon its own proper principles. What weight there 
may be in such objection. I shall not take upon me to determine. Yet I must confess. 
that. how natural soever it may be. in the resolution of certain problems relating 
to geometrical magnitudes. to consider such magnitudes as generated by motion. 
it seems to me not natural to bring motion into consideration in resolVing problems 
purely algebraical: Nor does it seem natural. in resolving problems concerning the 
motion of bodies. to superinduce imaginary motions. and therewith bring into 
consideration the velocity of time. the velocity of a velocity. &c. nor yet does it appear 
more natural. in the resolution of other problems. to make use of the fluxionary 
method. when (as is most commonly the case in that doctrine) the fluxions 
introduced into the process can only in a figurative sense be said to be the velocities 
of increase of the quantities called their fluents: such figurative expression being 
not the natural language of Analytics. but frequently. instead of conveying clear 
and distinct ideas. is confusedly employed in treating of quantities as generated by 
motion. which in reality cannot be conceived to be so generated (such quantities 
are weight. density. &c.) (Landen (1764). pp. iv-v) 

In short. Landen's idea consisted in using the formula: 
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In order to differentiate x1• Landen wrote: 
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When x = v. he obtained the' special value' }x1. 
Landen's procedure is open to several objections. First of all. this 

algebraical foundation of the calculus works only with rational functions. 
Let us consider. for instance. x". a irrational: in this case Landen is 
compelled to introduce a limit process. 
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If we take a = V 2 we will have, in Landen's notation: 

x"-v" _[ 1+(vjx)+(vjx)2+ ... (1414times) 
--=x" 
x- v 1 + (vjx)" + (vjX)2" + ... (1000 times) 

Or, 'more nearly', 

x"-v" _[ 1+(vjx)+(vjx)2+ ... (14142times) 
--=x" 
x- v 1 + (vjx)"+ (vjX)2"+ ... (10 000 times) 

Therefore, in order to calculate the 'special value', Landen is led to 
calculate what he calls the 'ultimate value' (Landen (1764), p. 8) of 

1 + 1 + 1 + ... (14142 etc.) 
1 + 1 + 1 + ... (10 000 etc.)' 

A second objection is that the fundamental equation of the Residual 
Analysis is valid only if x =t= v, in fact the left term of Landen's equation 
when x = v is equal to oj o. In modern terms, Landen tries to assign a 
definite value for x = r to f(x)jg(x), when fir) = g(r) = o. He thought he 
had found R(x) = j(x)jg(x) such as R(r) is algebraically defined. In this case 
a conception of algebraical equality comes into play which was often 
adopted in the eighteenth century. An algebraical equation was to be 
taken as universally true: if on one side of the equation a substitution was 
not possible, this depended upon the particular form off(x)jg(x). The other 
side expressed the 'general value of such fractional quantity in terms 
which shall not vanish when x is equal to r' (Landen (1758), p. 8), and 
therefore the 'special value' could be attained. 

Even though the foundation of the calculus proposed in The Residual 
Analysis is not successful, Landen's work is remarkable from several points 
of view. It was a systematic attempt to de-geometrize the calculus and to 
work only with algebra. Algebra, or 'analytics " dealt with universally true 
equalities which could be interpreted according to the kinematical model 
of fluent quantities. Landen's methodology somewhat resembles that 
developed and explicated by the French Lagrangian school and by the 
analytical school of Cambridge in the 181 os; this methodology would play 
a relevant role in the period spanning the eighteenth and nineteenth 
centuries. Landen's terminology broke with the fluxional tradition: in The 
Residual Analysis one finds a definition, probably taken from Euler, of a 
'function' as 'an algebraic expression composed, in any manner, of any 
power or powers of any variable quantity, with any invariable coefficients' 
(Landen (1764), p. 2). In fact, Landen does not conceive the calculus as 
dealing with variables, their velocities, finite increases, and so on, but with 
'algebraic expressions' and' functions'. As in the case of Simpson, we can 
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see here the beginnings - unfulfilled - of an algebraic approach to the 
calculus. 

It is interesting to find in chapter IV of The Residual Analysis three 
theorems and a corollary on the continuity of certain classes of functions. 
The first one reads as follows: 

Suppose E to be an algebraic expression composed of x and other quantities; and 
suppose. that, how near soever x be taken to some certain quantity g, E is positive 
when x is less than g, and negative when x is greater than g; or positive when x 
is greater than g. and negative when x is less than g; then shall E, or its reciprocal, 
be = 0 when x is = g. (Landen (1764), p. 46) 

So Landen implicitly assumes that the only discontinuities are vertical 
asymptotes. If there is in 9 such a discontinuity, the reciprocal of the 
'algebraic expression' will have a zero in g. Continuity was generally 
assumed to be a universal property of functions by Landen's con­
temporaries, so it is no surprise to find in the proof of the preceding 
proposition that: 

If the value of E approaches to 0 when x is taken nearer and nearer to g, it is eVident 
that E will be = 0 when x is = g. (Landen (1764), pp. 46-7) 

The second proposition depends upon the first. It states that if Q(x) is 
positive for x = g, then Q(x) will be positive when' x is greater or less than 
9 between certain limits'. The third one says that if Q(g) > 0 and m is an 
odd number or a 'fraction whose numerator and denominator are both 
odd numbers', then there is a neighbourhood of 9 such that Q(x) '(x_g)m 
'will be negative when x is less than g, and positive when x is greater than 
g' (Landen (1764), pp. 47-8). These, of course, are very simple propositions 
in which restrictive suppositions on continuity are implicitly made. 
However, the style is completely new in the history of the fluxional 
calculus. In order to justify the calculation of the derivative (the' special 
value '), Landen does not refer to the properties of motion but studies the 
properties of continuity of algebraical expressions. In fact, in The Residual 
Analysis the propositions of chapter IV are employed to prove the 
correctness of the substitution of a variable which allows the passage from 
the 'general value' to the limiting 'special value'. 

The algebraical technique developed in The Residual Analysis was not 
employed by Landen in his other researches. For instance, in his works on 
integration he explicitly employs a method of limits. His most famous 
results are the so-called Landen's transformations for elliptic integrals, 
which were published in the Philosophical Transactions for the years 1771 
and 177 5. Here Landen employed both the notation and the terminology 
of the fluxional calculus; his algebraic approach to the calculus was not 
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even hinted at. It is in this context that Landen proved that an arc of an 
hyperbola can be expressed by means of two elliptic arcs. 

Studying the difference between the arc and the tangent of an 
hyperbola and a similar expression for the ellipse, Landen arrives at the 
following fluxional equation: 

(Landen (1772), p. 305) which holds when the variables y and z are linked 
by the relation 

It would be excessive to attribute to Landen a theory of elliptic integrals. 
His problem was not that of integrating functions of the form: 

((I - x2) (I _q2X2))1, 

and he never expressed Landen's transformations in the form known 
today. In fact the relation (*) is just a passage in the calculation and is not 
given particular attention; what is interesting for Landen is the geometric 
relation between the arc of the hyperbola and the arc of the ellipse. 
However, Landen's papers suggested to Lagrange and Legendre important 
generalizations which belong to the theory of elliptic integrals. Again, 
another fluxionist was shaping fruitful trends of research in the 
development of . analytics'. 4 

6.3 Waring's work on partial fluxional equations 

The case of Edward Waring (1736-98) is indicative of the conceptual 
difficulties that fluxionists could come across in promoting the analytical 
approach to the calculus. 5 His research in the field of the calculus deserves 
our attention not because of its value, but also because it constitutes a 
failure by one of the most talented British mathematicians. Waring was 
educated at Cambridge and was elected Lucasian Professor, in succession 
to John Colson, in 1761. It seems that he did not lecture; he spent his time 
in isolation, researching into mathematics and anatomy. His best work 
was on algebraic equations (see Waring (1762)), but he also produced a 
sizeable volume entitled Meditationes Analyticae (1776; 2nd edn. 1785) on 
fluents, fluxional equations, series and finite differences. In the preface he 
showed a good knowledge of the works of Clair aut, d'Alembert and Euler.6 

He lamented the fact that in Great Britain mathematics was cultivated 
with less interest than on the continent, and clearly desired to be 
considered as highly as the great names in continental mathematics. 
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There is no doubt that Waring was reading continental mathematics at a 
level never reached by any other British mathematician, but what he 
accomplished was very often a confused and sometimes misleading 
translation of the works of the continentals into a different conceptual 
framework. The case of partial differential equation is revealing. 

The first proposition to be considered is Theorem 11:7 

Given a quantity A. in which two variable quantities x and y occur; let its fluxion 
be A = ax + by; let us determine the fluxions of the quantities a and b, which will 
be respectively Ii = ax + fly, 6 = 1TX + py, where a, b, a, fl, 1T, p, we functions of the 
characters x and y; therefore it will be 1T = fl, that is 1T will be the same quantity 
as fl. 

Corollary. From this it follows that it can be found, given a fluxion (A = ax + by) 
which involves two variable quantities, jfits fluent can be expressed, or not. In fact, 
let us determine the fluxions of the quantities a and b, and if Ii = ax + fly, and 6 = 
1TX + pg, and 1T = fl, then the fluent can be expressed; if this does not hold the fluent 
cannot be expressed. (Waring (1776), 2nd edn., pp. 33-4) 

At first sight, this theorem could be understood as dealing with 
multivariate functions; but here Waring is merely restricting his analysis 
to ordinary exact differential equations. The corollary expresses the 
conditions of integrability. The quantity A is understood by Waring as 
A(x(t), y(t)) and its fluxion is obtained by implicit differentiation and should 
be written as 

dA oAdx oAdy -=--+--. 
dt ax dt oy dt 

Indeed, Waring deals only with F(x(t), y(t) ... Z(t)) and always conceives the 
process of differentiation as djdt; in consequence he can only obtain 
ordinary differential equations. The restriction imposed by the corollary to 
Theorem II indicates that Waring did not grasp the concept of a 
multivariate function. This proposition was already known to Clairaut: 
but we have seen that in Thiorie de la Figure de la Terre (1743) the 
mechanical model to which exact differentials were applied imposed the 
independence of both the variables x and y. 

However, at the end of chapter III of the Meditationes Analyticae (1776) 
Waring presents some partial differential equations taken from Euler's 
Istitutiones Calculi Integralis (I 768-70): here Euler's bracketed notation for 
partial derivatives is adopted. We find, for instance, the vibrating string 
equation expressed ass 

All the partial differential equations considered by Waring with their 
solutions are confusedly copied from Euler: it is impossible to follow 
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Waring's procedure because he contracts into three lines what Euler does 
in five pages of well ordered explication. He picks up things haphazardly 
from the Istitutiones, jumping from one chapter to another. Waring never 
acknowledges his indebtedness to Euler, even though not only Euler's 
theorems but also bits of his Latin text were copied. It is difficult for the 
reader to understand the role played by partial differential equations 
within the Meditationes Analyticae (1776). The traditional definition of 
fluent and fluxion given in the first chapter, followed by Theorem II, allows 
no possibility of understanding, for instance, what the vibrating string 
equation might mean. Furthermore, Waring never hints at the mechanical 
applications of the calculus and does not deal at all with the calculus of 
variations. It is important to stress that Waring was a very good 
mathematician and that nobody else in Great Britain had tried to approach 
Euler's mathematics. The difficulties he found in reading the well ordered 
and didactic exposition of partial differential equations in the third volume 
of the Istitutiones Calculi Integralis is a measure of the gap between the 
fluxional and the 'Eulerian' conceptualization of the calculus. 
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SCOTLAND 

(1785-180 9) 

THE NEXT three chapters are devoted to the attempts at reforming the 
calculus which were made in the late eighteenth century and early 
nineteenth century. The first location to which our attention is drawn is 
Scotland. where it was more likely that there were contacts with the 
continent. A geometric tradition was alive in Glasgow and Edinburgh. but 
this did not hinder several Scottish mathematicians from appreciating the 
importance of the' analysis' elaborated by the continentals. John Playfair 
played a significant role in promoting the study of analytical mathematics. 
In his lectures on physical astronomy in Edinburgh he certainly 
introduced a taste of the new techniques of Laplace. Perhaps more 
influential were his reviews and historical accounts concerning the 
development of mathematics in which he was extremely critical of the 
fluxional tradition. His call for a change was taken up by two young Scots. 
Wallace and Ivory. Their researches on elliptic integrals. motivated by 
Landen (1775). led them to appreciate Legendre's work. I conclude the 
chapter with a few notes on a quite obscure outsider. William Spence. who 
adopted in the early nineteenth century the differential notation and. more 
importantly. some algebraical methods of Arbogast. 

7.1 The universities and the Royal Society of Edinburgh 

Mathematics was taught in all four of the Scottish universities. There were 
Chairs of Mathematics at Glasgow. Aberdeen. St Andrews and Edinburgh. l 

On the retirement of Simson in 1 761. the teaching at Glasgow was 
continued by James Williamson (d.1795) who was appointed. as was 
usual in Scotland. his . assistant and successor'. The . assistant and 
successor' had the duty of teaching and received class fees. while the 
professor retained the Chair. the house and the stipend. At Glasgow 
students were not formally required to study mathematics; they could 

95 
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therefore graduate without attending classes in mathematics. This 
situation did not change until 1826. Consequently. only a small number 
of students payed the fees to the Professor of Mathematics. and both the 
Chair and the assistantship were of little economic interest. On 31 
December 1765 Williamson attempted to lay down a regulation according 
to which' after 10 June of the following year the Professor of Mathematics 
should examine all candidates for degrees in Arts' (Coutts (1909). p. 308); 
but his proposal came to nothing. In 1788 Williamson retired from 
teaching. and in January of the following year James Millar was appointed 
his assistant and successor. Millar was not a mathematician and preferred 
to lecture on law. Nonetheless. in 1796 he became Professor of 
Mathematics and held this post until his death in 1832. 

At Marischal College. Aberdeen University. we have already come 
across Colin Maclaurin (1698-1746) (see chapter I. section 1.3) and John 
Stewart (d. 1 766) (see chapter 4). The latter was Professor of Mathematics 
for thirty-nine years. from 1727 to 1766. In the second year. Stewart 
taught arithmetic. geometry. plane trigonometry. practical geometry and 
elementary algebra. while during the third year he taught spherical 
trigonometry. conic sections. astronomy and higher algebra. An optional 
third mathematical class covered advanced algebra. fluxions and parts of 
Newton's Principia (see Gerard (1755)). During Stewart's years of office a 
reform took place at Marischal: in 1 7 5 3 regenting was abolished. The 
curriculum was changed as follows: 

According to the accounts from Aberdeen about the middle of December. the 
Principal, Professors. and Masters of the Marischal College. in order to render the 
study of the sciences more natural and progressive. and to fit their students to be 
useful in life. have unanimously resolved. that henceforth the following general order 
in teaching shall be observed in that University. I. That the first year shall be 
wholly employed in Classic Literature under the Professor of Greek. as formerly. 
being the indispensable foundation of all scholarship. 2. That the second year of the 
academic course shall be spent in teaching History. Geography. Chronology. and 
an introduction to Natural History. commonly called special physics: at the same 
time that the whole students of this class shall attend lessons from the Professor of 
Mathematics. 3. That the third year be employed in the scientific parts of Natural 
Philosophy. the Laws of Matter. &c. commonly called general physics. - such as 
Mechanics. Hydrostatics. Pneumatics. Optics. and Astronomy. 4. That the fourth 
and last year be allowed to the study of abstract sciences. Pneumatology. Morals 
and LogiC. or the Art of Reasoning. And. that henceforth each Professor be 
employed in cultivating and teaching one particular branch of knowledge. (The 
Scots Magazine. XIV (Dec 1752). p. 606) 

The teaching of mathematics was continued by William Trail (d.1831). 
a pupil of Robert Simson. from 1766 to 1776 and by Robert Hamilton 
(1743-1829) from 1779 to 1824 (for further details see appendix: C.7)! 
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Both Trail and Hamilton were competent mathematicians, but it is difficult 
to assess the level of their teaching. Trail was the author of an elementary 
treatise on algebra (1796), first published in 1770, and is described by 
Ponting (19 79b), p. 167, as lecturing twelve times a week. R. Hamilton, 
better known as a political economist, published in (1800) his Heads 0/ Part 
0/ a Course 0/ Mathematics, in which he stressed the practical applications 
of mathematics to mensuration, surveying, dialling, navigation and 
astronomy (ponting (1979b), p. 168). During the eighteenth century all 
the professors of mathematics at Marischal taught fluxions only in an 
optional third class followed by a small number of students. 

In eighteenth-century King's College, Aberdeen, the Chair of Math­
ematics was practically vacant (see appendix C.7).3 In 1753 King's 
Senatus opposed the reform which took place in Marischal. therefore 
during the whole century mathematics was taught by the regents. 
According to Ponting, 

since he taught the same students for three years the regent could and sometimes 
did allow some mathematics from the tertian course to overflow into the 
magistrand year. With more time available the student in the Old Town (King's) 
progressed considerably further in the subject than his New Town (Marischal) 
counterpart. He studied conic sections in much greater detail and made 
considerable progress in fluxions (a topic not touched until the optional third class 
at Marischal), during his tertian year. In 1800 a regent, Robert Eden Scott, 
Gordon's grandson, prepared extensive notes (MS. K. 178) for his students on 
Dialling, Conic Sections and Fluxions' for want of a suitable elementary treatise on 
these subjects' (ponting (1979b), p. 172). 

At St Andrews the domination of the Gregorys, who had occupied the 
Chair of Mathematics from 1669, came to an end in 1763. The 
professorship passed to Nicolas Vilant (d.1807) and then to Robert 
Haldane (1772-1854). Here mathematics was taught in the first and 
second years, according to a regulation introduced in 1747. A third, more 
advanced, class' is said to have commenced as early as 1793, although no 
trace of it appears untill 1822' U. M. Anderson (1905), pp. xxx-xxxi). 
However, it must be said that mathematics was often taught by private 
tutors who do not appear in the official records of the universities. In the 
case of St Andrews this seems to have been particularly relevant. In fact 
three ofthe best Scottish mathematicians of this period, John Playfair, John 
Leslie and James Ivory, were all students at St Andrews. Clearly, in their 
mathematical studies they went beyond what was required in the 
curriculum. The last two are said to have studied under the Rev. John 
West, assistant to the Professor of Mathematics (see Proceedings o/the Royal 
Society, IV (1842), p. 406). 

At the University of Edinburgh Maclaurin was succeeded in 1747 by 
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Matthew Stewart, who made important contributions to the study of 
geometry. His son Dougald Stewart, known today as a philosopher of the 
common sense school. took over the teaching from 1772 to 1785 when 
he was appointed to the Chair of Moral Philosophy. In 1785 Adam 
Ferguson became Professor of Mathematics and John Playfair became 
joint-Professor (see section 7.2). Playfair moved to the Chair of Natural 
Philosophy in 1805 when he was substituted by John Leslie in the Chair 
of Mathematics. Two other names relevant for our historical survey should 
be mentioned here: William Wallace (see section 7.3), Professor of 
Mathematics from 1819 to 1838, and John Robison, Professor of Natural 
Philosophy from 1774 to 1805. This is a remarkable group of 
mathematicians who, as we will see, were instrumental in improving the 
teaching of and research into mathematics in Great Britain. 

Another important feature of scientific life in Edinburgh was the 
foundation in 1783 of the Royal Society of Edinburgh. This Society 
stemmed from a pre-existing Philosophical Society of Edinburgh which 
was founded in the late 1 730S. 4 The Philosophical Society was, in turn, an 
extension of the Medical Society of Edinburgh. The aim of the founders, 
who included Maclaurin, was to extend the scope of the Society's interests 
in order to include natural philosophy. Between 1737 and 1783 the 
Philosophical Society published only three volumes of Essays and 
Observations, Physical and Literary, in 1754, 1756 and 1771, respectively. 
In the first volume there is a paper by Stewart on porisms (1754) and two 
papers by Maclaurin on astronomy, (1754a) and (1754b), while in the 
second volume Stewart (1756) is concerned with Kepler's problem. The 
Philosophical Society never reached a level of activity comparable to the 
Royal Society of London. This is partly explained by the disorders of 1745 
and by the death of Maclaurin in 1746, both events occurring only a few 
years after its foundation. After an encouraging, even if delayed, beginning 
in the 17 50S with the publication of volumes 1 and 2, the SOciety went 
into decline until the 1770s. In this decade the bases were laid down for 
the establishment of the Royal Society of Edinburgh with John Robison as 
General Secretary. The new Society edited regularly a series of Transactions 
of the Royal Society of Edinburgh, the first volume appearing in 1788. Each 
volume was divided into a 'Physical' and a 'Literary' class; the former 
class including 'Mathematics, Natural Philosophy, Chemistry, Medicine, 
Natural History and whatever relates to the improvements of Arts and 
Manufactures' (Transactions of the Royal Society of Edinburgh, I (1788), 
p. 12). As we will see in this chapter, many papers, especially those by 
Playfair, Wallace and Ivory, concerned the calculus of fluxions. 
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7.2 John Playfair 

John Playfair (1748-1819) is today best remembered as a geologist. 5 In 
fact from 1 797 he embarked on the project of systematizing and 
commenting on James Hutton's theory of the Earth. However, Playfair also 
occupies an important place in the history of the eighteenth-century 
British calculus, since he was one of the first to bring continental methods 
to the attention of British mathematicians. 

Playfair entered St Andrews in 1762 with the purpose of qualifying for 
the Church. He soon displayed a great interest in mathematics, and while 
still a student lectured on natural philosophy. In 1766, when he was just 
eighteen years old, he competed for the Chair of Mathematics at Marischal 
College, Aberdeen: he qualified third after William Trail (d. 1 831) and 
Robert Hamilton lI743-1829), who was later appointed to the Chair of 
Natural Philosophy (1779) and to the Chair of Mathematics (1817) at the 
same university. In 1772 Playfair was an unsuccessful candidate for the 
Chair of Natural Philosophy at St Andrews. He had to wait until 1785 for 
his first appointment, which was as jOint-Professor of Mathematics at 
Edinburgh University. His position as joint-Professor meant that he had to 
undertake the teaching. Adam Ferguson, the Professor of Mathematics, 
was in bad health, and in 1785 had exchanged with Dougald Stewart the 
Chair of Moral Philosophy for that of Mathematics. Playfair's teaching is 
remembered by Francis Jeffrey as of great importance in up-dating the 
study of mathematics at Edinburgh: 

for the benefit of those who wished to cultivate the higher branches of the science, 
he taught at intervals a third class, rendered doubly valuable by his intimate and 
masterly knowledge of the modern analysis, at that time so little attended to in 
Britain. This class was attended by many who had long finished their academical 
studies. (Jeffrey (1822), p. xxi) 

Unfortunately he did not publish his more advanced lectures on the 
'modern analysis'. In II 795) his Elements of Geometry were issued, while 
in lfSl2-14) a two-volume Outlines of Natural Philosophy contained the 
lectures he gave as Professor of Natural Philosophy. 

The commitment of Playfair in extending the boundaries of the fluxional 
tradition is best displayed in his research papers and his learned reviews of 
continental works. However, Playfair's first paper (1779) 'On the 
arithmetic of impossible quantities', which appeared in the Philosophical 
Transactions for the year 1778, showed some signs of attachment to the 
Scottish geometrical school of Simson. In it Playfair faced the problem of 
the legitimacy of using complex numbers; it was rejected by some because 
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of the apparent impossibility of interpreting the roots of negatives as 
geometrical quantities. In fact Playfair began as follows: 

The paradoxes which have been introduced into algebra, and remain unknown in 
geometry, point out a very remarkable difference in the nature of those sciences. 
The propositions of geometry have never given rise to controversy, nor needed the 
support of metaphysical discussion. In algebra, on the other hand, the doctrine of 
negative quantities and its consequences have often perplexed the analyst. and 
involved him in the most intricate disputations. The cause of this diversity, in 
sciences which have the same object, must no doubt be sought for in the different 
modes which they employ to express our ideas. In geometry every magnitude is 
represented by one of the same kind; lines are represented by a line, and angles by 
an angle. The genus is always signified by the individual, and a general by one of 
the particulars which fall under it. By this means all contradiction is avoided, and 
the geometer is never permitted to reason about the relations of things which do 
not exist, or cannot be exhibited. In algebra agaln every magnitude being denoted 
by an artificial symbol, to which it has no resemblance, is liable, on some occasions, 
to be neglected, while the symbol may become the sole object of attention. It is not 
perhaps observed where the connection between them ceases to exist, and the 
analyst continues to reason about the characters after nothing is left which they 
can possibly express: if then, in the end, the conclusions which hold only of the 
characters be transferred to the quantities themselves, obscurity and paradox must 
of necessity ensue. lPlayfair (1779), p. 318) 

In this paper Playfair, developing ideas which he probably derived from 
Lambert's works on trigonometry, maintained that the geometrical 
analogy between the circle and the hyperbola allowed the use of 
imaginaries in the expression of circular functions such as 

exi _ e-xi exi + e-xi 

sin (x) = . and cos lx) = , 
21 2 

because of their analogy with the hyperbolic functions 

Naturally these expressions allowed the algebraic proof of many 
trigonometrical formulas. Playfair continued by showing the utility of 
complex numbers not only in trigonometry but also in the theory of 
integration. Playfair's conclusion was, however, old-fashioned, since he 
restricted the use of complex numbers solely to the expression of circular 
functions: 

I. That the only cases in which imaginary expressions may be put to denote real 
quantities, are those in which the measures of ratios or of angles are concerned. 
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2. That the property of either of those measures, so investigated, might have been 
inferred from analogy alone. (Playfair (1779), p. 335) 

Playfair never returned to this thesis. 6 Soon after this paper he became 
convinced of the necessity to abandon geometrical analogies as jus­
tification for the use of mathematical symbols. In doing so, he distanced 
himself from the Scottish geometrical school of Simson and Stewart. but 
not from the fluxional tradition which also included, as we have seen in 
chapter 6, defenders of the 'analytic art' such as Simpson, Landen and 
Waring. What was new in Playfair was his ability to discern important 
themes in the recent developments of the continental calculus. 

Three years after the publication of the paper on complex numbers, 
Playfair visited London, where he met the Astronomer Royal. Nevil 
Maskelyne (1732-18II). His impressions are revealing: 

He [Maskelyne] is much attracted to the study of geometry, and I am not sure that 
he is very deeply versed in the late discoveries of the foreign mathematicians. 
Indeed, this seems to be somewhat the case with all English mathematicians; they 
despise their brethren on the Continent, and think that every thing great in science 
must be for ever confined to the country that has produced Sir Isaac Newton. Dr. 
Maskelyne, however, is more than almost any of them superior to this prejudice. 
He is slow in apprehending new truths, but his mind takes a very strong hold of 
them at last. (Playfair (1822a), I. p. lxxviii) 

Despite his determination to approach the methods of the' brethren on the 
Continent', Playfair did not carry out any research in mathematics. 
However, three papers published in the Transactions of the Royal Society of 
Edinburgh need to be mentioned. These works do not aim to present new 
mathematical results. but rather to apply analytical methods to mechanics. 
The first work. Playfair (1788b). deals with formulas of corrections of 
barometrical measurements; the second (1805) with formulas for the 
measurement of the arc of the meridian: and the third (1812) with the 
problem of finding. given a certain mass. the shape which attracts more 
strongly a particle in a given direction. This last paper especially might 
have afforded a chance to apply the techniques of the calculus of 
variations; but Playfair missed this opportunity: 

On considering the question more nearly, I soon found. though it belongs to a class 
of problems of considerable difficulty, which the Calculus Variationum is usually 
employed to resolve, that it nevertheless admits of an easy solution. and one 
leading to results of remarkable simplicity. (Playfair (1812), p. 187) 

As a matter of fact, Playfair never adopted the tools devised by Euler, 
d' Alembert and Lagrange. which he so much appreciated. However, he 
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was competent enough to understand the importance of the new 
achievements of the continental calculus. 

One of Playfair's most infiuential papers was a review of Laplace's 
Mecanique celeste. Playfair (1808) was often praised as one of the first 
attempts to awaken the interest of British mathematicians in the works of 
the French school. Playfair not only comments on the contents of the first 
four volumes of Laplace's work, but also places them in the context of the 
development of eighteenth-century astronomy and, in the end, adds 
several considerations to the reasons behind the inferiority of British 
achievements. The progress of mathematics after Newton and Leibniz is 
described as depending upon the analytic treatment of trigonometry, the 
discovery of 'partial differences' or 'partial fluxions', the ' calculus 
variationum " the integration of new functions and of higher order 
differential equations. In the field of mechanics Playfair notes the 
emergence of the principle of virtual velocities and its employment in 
Lagrange's Mechanique Analitique (1788). Then he proceeds to show how 
Laplace was able to employ these tools in the study of astronomy. Playfair 
devotes particular attention to the three-body problem and to the theory 
of tides. A final question is put to the reader: 

In the list of the mathematicians and philosophers, to whom that science, for the 
last sixty or seventy years, has been indebted for its improvements, hardly a name 
from Great Britain falls to be mentioned. What is the reason of this? (Play fair 
(1808), pp. 279-80) 

Playfair goes on to describe the situation in England and Scotland: 

The calculus of the sines was not known in England till within these few years. Of 
the method of partial differences, no mention, we believe, is yet to be found in any 
English author, much less the application of it to any investigation. The general 
methods of integrating differential or fluxionary equations, the criterion of 
integrability, the properties of homogeneous equations, &c. were all to them 
unknown; and it could hardly be said, that. in the more difficult parts of the 
doctrine of Fluxions, any improvement had been made beyond those of the 
inventor. At the moment when we now' write, the treatises of Maclaurin and 
Simpson, are the best which we have in the fluxionary calculus, though such a vast 
multitude of improvements have been made by the foreign mathematicians, since 
the time of their first publication. These are facts, which it is impossible to disguise; 
and they are of such extent, that a man may be perfectly acquainted with every 
thing on mathematical learning that has been written in this country, and may yet 
find himself stopped at the first page of the works of Euler and D' Alembert. He will 
be stopped, not from the difference of the fluxionary notation, (a difficulty easily 
overcome), nor from the obscurity of these authors, who are both very clear 
writers, especially the first of them, but from want of knowing the principles and 
the methods which they take for granted as known to every mathematical reader. 
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If we come to works of still greater difficulty, such as the Mechanique Celeste, we will 
venture to say, that the number of those in this island, who can read that work 
with any tolerable facillty, is small indeed. If we reckon two or three in London and 
the military schools in its vicinity, the same number at each of the two English 
Universities, and perhaps four in Scotland, we shall not hardly exceed a dozen; and 
yet we are fully persuaded that our reckoning is beyond the truth. (Playfair (1808), 
p. 281) 

Playfair's review is typical of early nineteenth-century Great Britain.7 As 
we will see below, Laplace's Mecanique celeste was the stimulus which led 
many British mathematicians to study the works of their continental 
colleagues. 

7.3 Wallace and Ivory 

Playfair's programme was successfully continued by two of his young 
proteges, Wallace and Ivory. In this section I will deal with their early 
work up to 1803. From that date onwards they were to be found working 
in England, concerned in promoting knowledge of French mathematics. 

James Ivory (1765-1842) was the son ofa watchmaker.s In 1779 he 
entered St Andrews where he studied under John West, an assistant to the 
Professor of Mathematics. In 1783 he began a theological course, which 
he completed in Edinburgh in 1786. He did not pursue his career in the 
Church but was appointed assistant-teacher in an academy in Dundee. 
Three years later Ivory became a partner in a flax-spinning company; and 
in 1804 he was appointed to the Chair of Mathematics at the Royal 
Military College in Great Marlow. In 1819 he resigned because of bad 
health and moved to London where he spent the rest of his life. 

Ivory's work during his early Scottish period consists ofa series of papers 
published in the Transactions of the Royal Society of Edinburgh. Only Ivory 
(1798) is concerned with the calculus; it deals with the problem of 

expanding (a2 + b2 - 2ab cos (lj))-t 

into a series of the form: 
00 

L An cos (nO). 
n-O 

These researches led him on to consider Legendre polynomials and elliptic 
integrals. Rather than constituting an attempt to approach continental 
analysis, this research might have been motivated by Landen (1775). 

William Wallace (1768-1843), a self-taught mathematician who 
gained the esteem of Playfair and Robison for his knowledge of geometry, 
was able to extend Ivory (1798) in his (1805).9 Wallace's results had, 
however, been anticipated by Legendre. As we will see in the next section 
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he later recognized Legendre's priority. The other contributions of Wallace 
in this period were concerned with porisms. He gained a great reputation 
as a mathematician: an anonymous (1803b) and a too enthusiastic 
reviewer compared him with Euler and Lagrange. It was not difficult for 
him to win an appointment as Mathematics Master at the Royal Military 
College at Great Marlow. He retired in 1819, the same year as Ivory, and 
moved to Edinburgh where he occupied the Chair of Mathematics till 
1838. As we will see below, during their period at the Military College, 
Wallace and his colleague Ivory became two of the most influential 
reformers of the British calculus. 10 

7.4 Glenie and Spence 

It is appropriate here to mention two minor Scottish mathematicians 
whose contributions were considered with 'interest by their contem­
poraries. 

The first is James Glenie (1750-1817), educated like Playfair, Ivory and 
Leslie at St Andrews. He then went to the Royal Military Academy at 
Woolwich where he qualified as a military engineer. He served as an 
artillery officer in the American War of Independence and taught 
(c. 1805-10) at the East India Company Royal Military College at 
Addiscombe. Glenie wrote on gunnery (1776), but also on the binomial 
theorem and on his 'Antecedental Calculus' (1778), (1789), (1793) and 
(1798). The aim of Glenie's antecedental calculus was to construct a 
'Geometrical Method' which was independent of any 'consideration of 
Motion and Velocity' and equivalent to the Newtonian calculus of 
fluxions. He employed the binomial theorem in order to express the 
incremental quotient of algebraic functions as a power series, then quite 
simply deleted higher order powers and obtained the equivalent of the 
Newtonian fluxion, or Leibnizian derivative. Notwithstanding the obvious 
weakness of Glenie's mathematics, his works were fit to be published in the 
Philosophical Transactions and in the Transactions of the Royal Society of 
Edinburgh: a sign of interest in alternative approaches to the Newtonian 
fluxional calculus. In fact, algebraical proofs of the binomial theorem 
became a fashionable exercise in the late eighteenth century. Papers such 
as Abram Robertson (1795) and (1806), Sewell (I 796) or Knight (1816) 
were all devoted to the algebraical derivation, . independent from the 
principles of the fluxional calculus', of the binomial theorem. This interest 
in algebraization was to bear (as we will see in chapter 9, section 9.5) more 
substantial fruit with the adoption of the Lagrangian programme. 

More interesting is another Scottish outsider, William Spence 
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(1777-1815).11 He was born in Greenock where he formed a 'Literary 
Society' together with his young friends. Even though he showed a 
remarkable aptitude for study, he was sent to Glasgow to be educated as 
a manufacturer. Nevertheless, Spence devoted himself to mathematics, 
and in 1809 he published An Essay on the Theory of the Various Orders of 
Logarithmic Transcendents. This was a very interesting work; in fact, Spence 
was one of the first British mathematicians to show a marked predilection 
for the Lagrangian school and particularly for Arbogast (1800). It may be 
that Spence was influenced by Woodhouse (1803) (see chapter 9, section 
9.2). Spence (1809) was intended as a part of a 'Theory of Analytic 
Functions'. an expression which recalls the title of Lagrange (1797). 
Differential notation was employed throughout the work. A function was 
defined as 'the analytical expression of the result which certain operations 
produce on a given quantity, or on any number of quantities' (Spence 
(1809). p. iii). He put forward ideas very similar to Woodhouse on the 
independence of 'Analytical Mathematics' from mechanical and geo­
metrical interpretations: 

It is one thing to learn the science of Analytical Mathematics, and another, to learn 
its practical applications; and although most of our authors, in this country, have 
mingled these very different subjects together, it is certainly much to be doubted, 
whether any advance has thence accrued either to the student or to the science 
itself. There is surely a material distinction betwixt the art of Numeration and the 
process of Book-keeping. For the understanding of the latter, the former must be 
learned; but it is quite unnecessary for the mere student of Arithmetic to make 
himself master of Merchant's Accounts. In the same manner is the general science 
of Mathematical Analysis related to Geometry and Mechanics. Both these 
departments of knowledge are greatly facilitated and enlightened by the modern 
analysis: but the benefit thus conferred is by no means reciprocal, for the principles 
and methods of the latter are, of themselves, independent, and may be 
demonstrated without any foreign aid. In Great Britain, however. we do not seem 
to have sufficiently weighted the importance of this circumstance. Our analytical 
treatises consist, in great part, of dissertations relative to Statics, Dynamics, &c.; 
and before the learner can proceed beyond the threshold of science, his attention 
is called off to consider the path of a projectile, or the vibrations of a pendulum. It 
may fairly be asked, what have these subjects to do with analysis? and the only 
answer that can be given to this question is, that they form some of its numerous 
applications, and exemplify several of its theories; although no otherwise connected 
with these theories, than as showing how analytical formulae can be interpreted 
by the combinations of material bodles, and their reciprocal actions on each other. 
These, undoubtedly, are important enquiries, but are they not out of place in a 
work destined to the development of any part of Analytical Mathematics? Analysis 
is the instrument employed in these researches; and should not the powers of the 
instrument be the first object of instruction, more especially, when all the 
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difficulties which occur in using it are only to be overcome by a thorough possession 
of its principles? Our mode of instruction. however. is quite the reverse of this. Our 
pupils are taught the science by means of its application; and when their minds 
should be occupied with the contemplation of general methods and operations. 
they are usually employed on particular processes and results. in which no traces 
of the operations remain. On the Continent. Analysis is studied as an lndependent 
science. Its general principles are first inculcated; and then the pupil is led to the 
applications; and the effects have been. that while we have remained nearly 
stationary during the great part of the last century. the most valuable 
improvements have been added to the science in almost every other part of Europe. 
The truths of this needs no illustration. Let any person who has studied 
Mathematics only in British authors. look into the works of the higher Analysts on 
the Continent. and he will soon perceive that he has still much to learn. (Spence 
(1809). pp. x-xi) 

Ideas very similar to Spence's were to be shared by the Fellows of the 
Analytical Society in the 1810s (see chapter 9. section 9.5). The 
logarithmic transcendants with which Spence (1809) was concerned were 
defined as: 

where L'(x) = In(x). Landen in his (1761) had already studied the 
properties of these functions. Spence tabulated the functions l' and U. and 
applied them to the integration of 

fFL' ( V)dx. fFL 2( V)dx. 

where F = X/(a + bx ± X2)~ and X and V are rational functions. He also had 
a notation for partial derivatives: 

and expressed the relations 

an an 02 02 

a- = -aand-- = --. axn axn axay ayax 

In addition. he treated double integrals. writing (Spence (1809). p. 104): 

2f Pdxdy. 

Moreover. very simple functional equations were solved by assuming a 
power series representation of the unknown function. 

We may consider Spence (1809) as a bold attempt by an unknown and 
provincial mathematician to break with the fluxional tradition and to 
employ the new symbolical techniques of the Lagrangian school. Less 
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fortunate was Spence (1814), in which an attempt was made to provide 
a global treatment of algebraical and differential equations (another classic 
topic in the Lagrangian calculus of operators). 

Spence died in 1815. His friends sent some of his manuscripts to John 
Herschel (1792-1871). one of the young promoters of the British 
Lagrangian school. Herschel edited them and added a preface. 12 William 
Spence. the President of the Greenock Literary Society, had worked in 
isolation in a direction which was to dominate the scene of British 
mathematics in the first half of the nineteenth century. 
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THE MILITAR Y SCHOOLS (1773-1819) 

THE MILITARY schools played an interesting role in the reform of the 
British calculus. At Woolwich we find a group of engineers including 
Hutton. Barlow. Gregory and Bonnycastle. They had at their disposal the 
dockyard. the arsenal and nautical instruments. and so were in a position 
to investigate the strength of materials. magnetism and ballistics. Their 
knowledge of similar work in France was extensive. while their own 
contributions to engineering were known on the continent. They did not 
excel as mathematicians. and. with the exception of Bonnycastle. they did 
not break with the fluxional tradition. As teachers they could not 
introduce any sophisticated innovations into the curriculum for the 'raw 
and inexperienced' cadets. However. with their textbooks and essays they 
greatly contributed to improving the knowledge of continental science in 
Britain. At Sandhurst more basic research on integration was carried out 
by the two Scots. Ivory and Wallace. assisted by Leybourn and several 
other colleagues. They contributed to a Mathematical Repository. where 
differential notation. partial derivatives and difference equations appeared 
as early as 1806. Their work marked a significant step towards the 
continental calculus. Certainly it was not possible for them to introduce 
their students to more than algebra and trigonometry. The masters at the 
military schools also participated actively in the astonishing number of 
scientific journals and encyclopaedias published during the first decades of 
the nineteenth century. Their contribution to the development of British 
science has been unjustly neglected. Some attention is given in this 
chapter also to the Royal Naval Academy at Portsmouth. founded in 1733 
to train naval officers. However. the study of the three military schools 
treated in this chapter does not at all exhaust the subject of military 
education in eighteenth-century Britain. Only a small fraction of the 
officers were trained at Woolwich. Sandhurst or Portsmouth. The great 
majority were trained directly on the field. or on the quarter-deck: by 

108 
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apprenticeship, so to speak. Furthermore. there was quite a number of 
private schools and academies which could compete with the three Royal 
military schools. 

8.1 The Royal Military Academy at Woolwich 

The Royal Military Academy at Woolwich was instituted in 1741 with the 
purpose of' instructing the raw and inexperienced people belonging to the 
Military branch of this·office, in the several parts of Mathematics necessary 
to qualify them for the service of the Artillery. and the business of 
Engineers' (W.O. Jones (185 I). p. I). I In the beginning the school was 
attended not only by young students (called the 'gentlemen cadets'), but 
also by 'Practitioners Engineers. Officers. Serjeants. Corporals[ ... ] and also 
all such Bombardiers. Miners, Pontoonmen. Mattrossess. and others of the 
said Regiment [of Artillery] as have a capacity and inclination to the same' 
(W.O. Jones (1851). p. 2). Two masters were employed: the Chief Master 
was John Muller. whom we have already mentioned as a writer on 
mathematics and fortifications (see chapter 4). Gradually the teaching staff 
and number of cadets increased. while the habit of teaching officers and 
the craftsmen of the Regiment of Artillery was abandoned. In I 776 the 
cadets numbered forty-eight and there were just two masters. while in 
1806 the cadets totalled more than 180 and there were almost twenty 
masters, Le. a professor of mathematics and seven mathematical assistants. 
a professor of artillery and fortification with two assistants, two drawing­
masters. two French masters. a master for fencing, a master for chemistry. 
and a master for dancing. 

A sizeable group of good mathematicians was employed at Woolwich. 
The most notable in the period 1741-1838 were John Muller. Thomas 
Simpson, Charles Hutton, John Bonnycastle. Olynthus Gregory, Peter 
Barlow and Samuel H. Christie. In fact. Woolwich became a centre for the 
reform of British science. The practical needs of military engineering 
demanded sophisticated scientific knowledge: this partly explains why the 
Woolwich masters were so interested in contemporary continental works. 
The French military schools in particular became a model for many 
European countries in the early nineteenth century. As we will see, the 
mathematics masters at Woolwich did not make any significant 
contribution to mathematics; nonetheless they stressed the importance of 
the French achievements and wrote a series of works (dictionaries, 
encyclopaedias. textbooks) which acquainted the British reader with the 
methods and results of the continental school. 

This does not imply that the teaching at Woolwich reached a very high 
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standard: the little we know about it scarcely encourages such an 
hypothesis. In the syllabuses for 1764 we find that the Professor of 
Artillery and Fortification based his teaching on • the following books, viz. 
Gregory's Practical Geometry, Vauban's Treatise of Fortifications, Muller's 
Elements of Fortifications, Muller's Attack and Defence of Fortified Places' 
(Manners (1764), p. 7).' The course on mathematics included algebra, 
geometry, mensuration of superficies and solids, plane trigonometry, conic 
sections, theory of perspective, geography and the use of globes. The set 
texts were' Selects parts of Professor Saunderson's Elements of Algebra, 
including common arithmetic, Simpson's Elements of Geometry, Hawney's 
Mensuration of superficies and solids, Kirby's Theory of Perspective, 
Cowley's Theory of Perspective demonstrated, Salmon's Geography, Harris 
on the use of Globes' (Manners (1764), p. 8).3 The syllabuses for 1776 
only differ to a slight extent. In 1792, however, we find a more structured 
course of mathematics, the result of almost twenty years of Hutton's 
teaching. The subjects to be studied folloWing Hutton's manuscript A 
Course of Mathematics, 2 vols (1798, 1801) were: arithmetic, logarithms, 
geometry, algebra, trigonometry, mensuration, conic sections, mechanics, 
fluxions, hydrostatics and hydraulics, pneumatics, resistance of fluids and 
gunnery (see W.O. Jones (1851), p. 88). Hutton (1798, 1801) ran to 
twelve editions, several American editions and even a translation into 
Arabic. Hutton's Course was abandoned in Woolwich only in the mid-
1830s, when Samuel Christie introduced the continental differential and 
integral calculus. 

From 1792 to 1806 six new mathematics masters were appointed. 
Mathematics clearly dominated the course of studies for cadets, but, as can 
be inferred from the syllabuses, only the most elementary aspects of 
mathematics were included in the curriculum. Furthermore, we suspect 
that even the very elementary level required was not reached: from the 
Records of the Royal Military Academy, W.O. Jones (1851), one gets the 
strong impression that the discipline of both the masters and the cadets 
was not exemplary. The cadets, who entered at the age of about fourteen, 
were supposed to leave Woolwich after two years. In fact, after a two-year 
course a cadet was reported • fit for a public examination for a Commission 
in the Royal Corps of Artillery and Engineers' (W.O. Jones (1851), p. 33). 
Smyth says that' the first public recorded examination took place in I 765 
in the presence of the Marquis of Granby, Master-General' and that public 
passing-out examinations were instituted in place of • somewhat per­
functory' viva-voce examinations (see Smyth (1961), pp. 37-8). 



8 THE MILITARY SCHOOLS (1773-1819) III 

8.2 Charles Hutton 

Charles Hutton (1737-1823) was born in Newcastle in a family of colliery 
workers.4 After being educated at local schools, he was able to set up his 
own course in the late I7Sos. Hutton's flair for teaching was soon 
revealed: he established himself as one of the most successful mathematics 
teachers in the region. In 1770 he was asked by the Mayor and 
Corporation of Newcastle to prepare a survey of Newcastle. When in 1771 
the bridge over the Tyne collapsed, Hutton wrote a book (1772) on the 
stability of bridges. In 1773 the main event in Hutton's career occurred. 
The Chair of Mathematics at Woolwich became vacant, and a public 
examination was held for the election of the new Professor: amongst the 
examiners there were Samuel Horsley, John Landen and Nevil Maskelyne. 
Hutton was appointed in May 1773 and retained the job until 1807. In 
this period Hutton produced a massive amount of work. Hutton (I77sb) 
was a five-volume edition of the Ladies' Diary from the first issue in I 704 
to the 1773 issue. Hutton was the editor of this famous periodical from 
1773/4 to 1817 (see section 8.5). In addition, he prepared an abridgement 
of the Philosophical Transactions from 1665 to 1800, wrote his Mathematical 
and Philosophical Dictionary (1796, 1795), two volumes of papers on series 
and gunnery (1786) and a two-volume Course 0/ Mathematics (1798, 
1801), and also found time to publish numerical tables. 

In I 779 Hutton was elected Foreign Secretary of the Royal Society; it 
is not surprising that his publishing career and his teaching at Woolwich 
did not allow him much time to perform the duties of this additional post. 
In 1783 he was obliged to resign, after a committee had reported on his 
case. A squabble ensued between the 'mathematicians', Horsley and 
Maskelyne, and the defender of the' disciples of Linneus' and President of 
the Royal Society, Joseph Banks. Banks succeeded in imposing his will, and 
Hutton did not publish in the Philosophical Transactions until after Banks's 
death. It is revealing that his (I 790) appeared in the Transactions 0/ the 
Royal Society o/Edinburgh.s Hutton retired from teaching in 1807. He spent 
the rest of his life in Woolwich living on a state pension. 

Hutton's researches centred on the convergence of series, and 
experiments in ballistics, the building of bridges and measuring the Earth's 
density. His research into series shows a certain influence of Euler in the 
approach to the problem of convergence (see chapter 9, section 9.5). The 
formal use of divergent series was accepted by Hutton as a legitimate 
method. Hutton referred very often to Euler with great esteem; the article 
'Euler' in Hutton's Dictionary (1796, 1795) is very detailed and 
appreciative. 
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Hutton did not hide his admiration for analytical methods and his belief 
that geometrical constraints are extraneous to research. He concluded the 
article 'Analysis' as follows: 

if we should look no farther than the method of the ancients, it is probable that, 
even with the best genius, we should have made but few or small discoveries, in 
comparison with those obtained by means of the modern analysis.[ ... ] Upon the 
whole therefore, the state of the comparison seems to be this; That the method of 
the ancients is fittest to begin our studies with, to form the mind and to establish 
proper habits; and that of the moderns to succeed, by extending our views beyond 
the present limits, and enabling us to make new discoveries and improvements. 
(Hutton (1796, 1795), I. p. 107) 

Hutton's Dictionary reveals a deep and extensive knowledge of continental 
works and is still used by historians as a valuable source. The British 
reader was provided with bibliographical and biographical information 
which could be used to orientate him in the variegated world of 
continental mathematics. Hutton gave space to d' Alembert, Euler and 
Lagrange, providing an outline of their methods and their results. 
However, Hutton's Dictionary did not include technical details of the 
foreign works. It is revealing that the brief entries for 'differential' and 
, integral' referred to 'fluxions' and 'fluents'. The explanation for this last 
entry went as far as the integration of rational functions, but almost 
nothing was said about differential equations. The chapter concerned with 
fluxions of Hutton's Course (1798, 1801) was also fully within the 
fluxional tradition. Hutton's achievement is in a way analogous to that of 
Playfair. Both advocated the 'new analysis' and gave publicity to foreign 
mathematics, but were unable to use it in research and, in reality, never 
even attempted to teach it in written works. 

8.3 OIynthus Gregory and Peter Barlow 

The Ladies' Diary was a vehicle for promising young mathematicians to 
make a name for themselves among the wide and diverse circle of 
philomaths. Charles Hutton, as editor of the Ladies' Diary, was particularly 
impressed by the answers of two contributors: Peter Barlow (i776-1862) 
and Olynthus Gilbert Gregory (1774-184 I). We know very little of their 
early lives and education. It seems that they both ran schools and that 
Gregory spent some time as a bookseller in Cambridge. When the staff of 
the Royal Military Academy was increased, they were appointed 
'mathematical assistants', most probably through Hutton's influence. 
Gregory was elected in 1803 and became Professor in 1821, while Barlow 
was elected in 1806. 
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Gregory prepared a course which consisted of a treatise on astronomy 
(1802), a treatise on mechanics (1806), and a translation (Haiiy (I 807)) 
of Haiiy's Traite EIementaire de Physique. The mathematical basis to 
Gregory's course is very weak, but it is still interesting how he updated the 
teaching of 'natural philosophy' by referring to French works. In his 
Mechanics attention is paid to Lagrange (1788) and Carnot's Geometrie de 
Position (1803). When treating floating bodies, he refers to Euler's Scientia 
Navalis in the translation (1776) of Henry Watson. In book III on 
hydrostatics, hydrodynamics and pneumatics he employs de Prony's 
Architecture Hydraulique (1790-6). A faithful pupil of Hutton, he continued 
his master's efforts at spreading knowledge of French physics in Great 
Britain. Surprisingly, his attitude towards the fluxional calculus was more 
conservative than Hutton's; he wrote: 

The Editor has long been of the opinion that, in point of intellectual conviction and 
certainty, the fluxional calculus is decidedly superior to the differential and integral 
calculus. (Hutton, Course of Mathematics, 11th edn. (ed. Olynthus Gregory), 2 vols 
(1836-7), II, p. 203. Quoted in Howson (1982), p. 251) 

After referring to D.M. Peacock, one of the opponents of the Analytical 
Society of Cambridge (see chapter 9, section 9.5), he added that to think 
of calculus 'without motion' was akin to thinking of . war without 
bloodshed, gardening without spades' (see Howson (1982), p. 251). 

Peter Barlow's main contributions are his numerical tables (1814b) and 
his researches into the strength of materials (18 17), optics, and magnetism 
(1820). These last gained him an international reputation. He studied the 
compass deviation caused by the iron in ships and devised a method of 
correcting it by placing a small iron plate close to the compass. Poisson in 
1824 supplied a mathematical theory to explain Barlow's experimental 
results. Barlow contributed to the Rees' Cyclopaedia (1802-20) with 
articles on algebra, analysis, geometry, strength of materials and to the 
Encyclopaedia Metropolitana (Division II, Volume I (1829)) with lengthy 
essays on mechanics, hydrodynamics, astronomy and magnetism. In these 
articles he showed all his profound acquaintance with foreign works, but 
he still used the fluxional notation. In line with the research carried out by 
Hutton into ballistics and bridge construction, Barlow may be considered 
more an engineer than a mathematician. And it was as an engineer that 
he was able to contribute to the researches of the French school which he 
desired to make known to his fellow countrymen. The introduction of 
French mathematics into Great Britain, that we are going to describe 
below in this chapter and in chapter 9, can be seen as part of a more 
general interest in French science, which was also stimulated by the 
Woolwich mathematics masters. 
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8.4 The Royal Military College at Sandhurst 

The Royal Military College was instituted in 1799.6 It was divided into two 
, departments' . A Senior Department for the instruction of a small number 
(about forty) of army officers was formed in 1799/1800 and was based at 
High Wycombe, in Buckinghamshire. The Junior Department, formed in 
1802, was attended by young students and was based near to Great 
Marlow. The two departments were moved in 1813 to Farnham and 
Sandhurst in Surrey, respectively. The Junior Department was much 
larger than the Senior Department: to begin with there were just sixteen 
cadets, but a Royal Warrant of 17 April 1803 fixed the number at 400. 
4 12 was the number indicated in the Royal Warrant of 27 May 1809. This 
level was never actually reached: in 1804 there were 199 cadets, while in 
1809 the cadets totalled 320, the highest recorded number I have seen. 
After this year it seems that the students decreased (e.g. in 1824 there 
were 212). 

The level of instruction given to the cadets during the first twenty years 
of the College's activity can be inferred from indirect sources and from 
Dalby's Course of Mathematics (1806) 'designed for the use of the officers 
and cadets in the Royal Military College'.7 Dalby (1806) treats, in a 
simplified way, arithmetic, geometry, mensuration, algebra, conic sections, 
mechanics (the six simple machines), hydrostatics, hydraulics and 
pneumatics. It was definitely more elementary than Hutton (1798, 1801), 
the analogous text used at Woolwich. We know that around 1820 a cadet 
had to possess the following qualifications before leaving Sandhurst: 

Thorough knowledge of Euclid, Books 1-6; well versed in either Classics, French, 
German, or History, conversant with the 1st and 3rd systems of Vauban (on 
fortifications); proficient in Military Drawing; general conduct impeccable. 
(Mockler-Ferryman (1900), p. 23) 

What is known about the Senior Department? Is it true that the few 
officers attending it were required to follow an advanced course in, for 
example, ballistics, embankment construction and cartography? The 
syllabus for 1802 does not support this view, but that of 1849, according 
to an . experienced officer', included the differential and the integral 
calculus, dynamics and statics, and 'practical astronomy' (see anonymous 
(1849), p. 55). Questions about the teaching of mathematics at Sandhurst 
are difficult to answer but not inappropriate, since the Military College had 
on its staff two of the best British mathematicians of the period. Wallace 
was appointed mathematics master in 1803, while Ivory was taken on in 
1804. They both resigned in 1819. To them we should add Thomas 
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Leybourn (1770-1840), a mathematics writer and editor of mathematical 
periodicals (see below), who was at Sandhurst from 1802 to 1839. 

8.5 The Ladies' Diary and the Mathematical Repository 

The Military Schools of Woolwich and Sandhurst are connected with the 
publication of two mathematical serials: respectively, the Ladies' Diary and 
the Mathematical Repository.s 

The former was launched in 1704 and continued up to 1840. It was the 
most famous mathematical periodical of the eighteenth century . philo­
maths'. Many fluxionists, such as Simpson, Landen and Hutton, began 
their careers as contributors to the Ladies' Diary. 

The first issues were concerned with enigmas, bad poetry, puns and 
other miscellanies; however, from 1707 the Ladies' Diary included a 
section on mathematical questions to be answered in the following issue. 
At the beginning the questions were very easy, but little by little they 
increased in number and difficulty. By 1840 more than 1800 questions 
had appeared. The connection with Woolwich began with Thomas 
Simpson who edited the Diary from 1754 to 1760. After thirteen years the 
Diary came back to Woolwich with Charles Hutton, editor from 1773/4 to 
1817, and with Olynthus Gregory, editor from 1818 to·1840. 

The Diary reflects very faithfully the level of instruction and math­
ematical expertise of the British philomaths, and it is a good guide for 
estimating their number. No less than thirty imitations were launched 
before 1800, an indication of the success of such publications. It seems 
that the Ladies' Diary was able to survive this competition because its 
editors, especially after Simpson, were careful to maintain respectable 
scientific standards. In the 1740S the mathematical questions became 
more difficult and the answers less cavalier in near coincidence with the 
Berkeley dispute, Maclaurin's Treatise and the increase in textbooks on 
fluxions which has been noted in chapter 4. As we have already seen, the 
calculus .of fluxions had a very restricted circulation in the first decades of 
the eighteenth century; not surprisingly, answers involving the use of 
fluxions were very rare before 1740, and there were in fact only three 
before 1730 (all on finding maxima or minima).9 Later the mathematics 
of the Ladies' Diary included integration and series. It is interesting to see 
that the number of contributors who were able to tackle these more 
advanced topics was quite limited (from 1740 to 1773 their number can 
be estimated at thirty). Moreover, most eighteenth-century philomaths did 
not touch the integration of sin(x): neither can any great results or deep 
discussions be found in the answers of the thirty top correspondents of the 
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Ladies' Diary. Good mathematicians such as Landen and Simpson 
contributed, but if they had something interesting to put forward they 
turned to the Philosophical Transactions or to an independent publication. 

The Ladies' Diary was important as a vehicle of information for the 
philomaths, but was not a research journal. J. Orchard, . Writing-Master 
and Teacher of the Mathematics at Gasport' (Hutton ll775b), II, p. 333), 
found it useful to publish answers in order to advertise his school. A young 
self-taught mathematician might find an audience to appreciate his ability. 
This kind of contributor always signed his name clearly and in full, 
indicating his place of activity and profession. Important figures preferred 
to conceal their identity behind pen-names. For example, Simpson, who 
when young and unknown signed his name and surname, later preferred 
to attach to his answers pseudonyms such as . Hurlothrumbo, Kubernetes, 
Patrick O'Cavannah, Anthony Shallow, Timothy Doodle, Marmaduke 
Hodgson' (Leybourn (1817), I, p. ix). 

The Sandhurst equivalent of the Ladies' Diary was quite different. It was 
launched by Thomas Leybourn in 1795 with the title The Mathematical and 
Philosophical Repository. After 1804 it continued in a new series divided 
into six volumes. This publication, especially the first three volumes of the 
new series (1806, 1809, 1814), is one of the most important works in the 
reform of the British calculus. Each volume included a section of questions 
and answers, a section of original essays and a section of . mathematical 
memoirs extracted from works of eminence'. Spread throughout the 
volumes one also can find brief reports on British and foreign (especially 
French) publications, and, from volume three, a publication of the Senate 
House Examinations of Cambridge University. 

In comparison with the Ladies' Diary, Leybourn's Repository was the 
work of a small number of people. The authors were mainly Leybourn 
himself, William Wallace, James Ivory and their colleagues at the Royal 
Military College: John Lowry, James Cunliffe and Mark Noble. Answers 
and original essays also arrived from Woolwich, written by Barlow and 
Gregory. A group of outsiders made contributions: they provided at 
a rough estimate about one-quarter of the answers and very few 
essays. Among them the most notable were Thomas Knight (binomial 
theorem and series), John Toplis (1774-1857) and Benjamin Gompertz 
(1779-1865). The best work, however, was done by Ivory and Wallace, 
and the Sandhurst men wrote a large part of the Repository. No matter 
what the cadets studied, mathematics was cultivated with enthusiasm at 
the Royal Military College. The level of the questions and especially of the 
essays was very high and marked a point of departure from the fluxional 
tradition. Notably, the differential notation was employed by Ivory and 



8 THE MILITARY SCHOOLS (1773-1819) 117 

Wallace as early as 1807/8 (see Leybourn (1806-35), II (1809), 
pp. 67-72, II 8-24). 

Another work rendered in differential notation was Wallace's trans­
lation of Legendre's 'Memoire sur les transcendantes elliptiques' (1794).10 
In the years immediately preceding Wallace's translation (which appeared 
in vol. II (1809) and vol. III (1814)), the rectification of the ellipse had 
received attention from Landen (1775), Ivory (1798), Hellins (1798b), 
(1800) and (1802), Woodhouse (1804) and Wallace himself (1805). The 
translation of Legendre (1794), in which the elliptic integrals were 
classified, as nowadays, into three species, was motivated by the great 
interest of the British mathematicians in this aspect of the theory of 
integration. II All the results of the British could be derived from Legendre's 
far more general treatment. Questions on elliptic integrals had already 
occupied Ivory and Wallace in the first volume of the Mathematical 
Repository (1806), where reference was made to Legendre (1794), which 
therefore became known to the Sandhurst men in between 1804 and 
1806 (see Leybourn (1806-35), I part I (1806), pp. 34-42, 153-4). The 
fact that Ivory and Wallace began using the differential notation after this 
date suggests that their total conversion to the continental calculus, 
inspired by Playfair, was reinforced by their encounter with a work which 
solved and systematized all their problems on elliptic integrals. 

Other points of interest in the Repository are Ivory's use of 'partial 
fluxions' and Wallace's integration of finite difference equations (see 
Leybourn (1806-35), II part 3 (1809), pp. 122-4, 156-9). At first, the 
other contributors did not follow Ivory and Wallace in using the 
continental notation; nonetheless many of their solutions and essays 
deserve attention since they often went deeper into a subject than the 
philomaths of the Ladies' Diary. 

8.6 Ivory's break-through 

Laplace's Mecanique celeste provided a stimulus stronger than Legendre 
(1794) to abandon the fluxional calculus. The impact of this work on 
British science cannot be underestimated. It was immediately recognized 
by many British mathematicians as the masterpiece which crowned 
Newtonian mechanics and astronomy. In particular, planetary motions 
and the Earth's shape were regarded as the most important objects of 
science in Great Britain as well as on the continent. The achievements of 
Laplace in these fields were outstanding: an urgent need arose to 
understand his work. 

Playfair advertised Laplace's Mecanique in (1808), while in 1814 there 
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appeared John Toplis's translation of the first two books. Playfair's lectures 
as Professor of Natural Philosophy (1812-14) constituted an easy 
introduction to the results obtained by Laplace on the stability of the solar 
system and the tides (Playfair (1812-14), II, pp. 229-341). These were 
some of the early efforts made to promote the knowledge of Laplace's 
masterpiece. 

Ivory was one of the first British mathematicians to follow up Playfair's 
suggestions. In (1809) Ivory concerned himself with Laplace's treatment 
in Book 3 of the Mecanique of the attraction of homogeneous spheroids. In 
this paper Ivory demonstrated his theorem on the attraction of confocal 
ellipsoids. He stated it as follows: 

If two ellipsoids of the same homogeneous matter have the same excentricities, and 
their principal sections in the same planes; the attractions which one of the 
ellipsoids exerts upon a point in the surface of the other, perpendicularly to the 
planes of the principal sections, will be to the attractions which the second ellipsoid 
exerts upon the corresponding point in the surface of the first, perpendicularly to 
the same planes, in the direct proportions of the surfaces, or areas, of the principal 
sections to which the attractions are perpendicular. (Ivory (1809), p. 355) 

This theorem can be derived from two of Laplace's results. The first says 
that the potentials of confocal ellipsoids at an exterior point are 
proportional to their masses. The latter says that the attractive force of an 
ellipsoid at a point on an axis is a linear function of the length of that axis. 
Ivory's theorem is an important one, for it played a role in the development 
of potential theory. It was noted by Legendre, Poisson and Gauss. This 
meant that Ivory had attained a result which received the attention of the 
best continental mathematicians. Furthermore, Ivory employed in his 
paper (1809) the differential notation, Euler's bracketed notation for 
partial derivatives, and repeated integral signs for multiple integrals. 
Legendre's functions were used throughout the paper and functions were 
expanded into infinite series without great concern for convergence. His 
understanding of the calculus was clearly differentialist: e.g. he used 
dxdydz to represent an infinitesimal cube. Ivory continued this trend of 
research in a sequel of works on attraction, fluid equilibrium and physical 
astronomy. He can be regarded as one of the first British mathematicians 
to free himself fully from the fluxional tradition. 

8.7 Other journals and the encyclopaedias 

Two other subjects must be considered briefly at this point; i.e. the 
launching of new scientific journals and the publication of encyclopaedias. 
At the turn of the century British science was characterized by an 
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impressive series of encyclopaedic publications (such as Hutton's Dic­
tionary) and scientific periodicals (such as Leybourn's Repository) which 
included not only material for popular consumption, but also high-level 
research. One of the aims of this kind of literature was to introduce French 
science into Great Britain: attention was paid to the amateur as well as to 
the researcher. Original papers written by British authors were included, 
but many papers were just translations of papers appearing in French 
journals. 

The main periodicals launched with this purpose were the Philosophical 
Magazine (1798-1826) edited by Alexander Tilloch (1823-4 by Tilloch 
and R. Taylor, 1825-6 by R. Taylor), the Journal of Natural Philosophy, 
Chemistry and the Arts (1797-1802, n.s. 1802-13) edited by William 
Nicholson and the Annals of Philosophy (1813-20) edited by Thomas 
Thomson. The Royal Institution was responsible for the launching of the 
short-lived Journal of the Royal Institution (1802-3) and the Journal of 
Science and the Arts (18 I 6-19). I will treat these periodicals together 
because they contained little mathematics, being largely devoted to 
chemistry. In fact Thomas Thomson describes the contents of his Annals as 
follows: 

It has been complained that too great a proportion of the Annals has been dedicated 
to Chemistry. We admit that, like all other journals of the present day, our Annals 
must contain a greater proportion of chemistry. which is making a rapid progress, 
than of those sciences which are in a great measure stationary. But any person 
who will run over the contents of our volume, will find essays belonging to the 
following branches of knowledge, namely, Agriculture, Anatomy, Astronomy. 
Biography. Botany, Geognosi, Hydraulics, Magnetism, Medicine, Meteorology, 
Mineralogy, Optics, Physiology, Statistics. (Annals of Philosophy, I (January-June 
1813), p. iv) 

Taking into account that the astronomical and the statistical papers were 
generally about positional astronomy and tables of mortality, one might 
conclude that mathematics was altogether absent from the Annals and the 
other similar periodicals. But this is not the case. For instance, the Annals 
published a translation of Delambre's reports on the mathematical 
department of the French Institut. A translation of Carnot's Reflections 
appeared in the Philosophical Magazine in 1800- I ; the differential notation 
was not changed into the Newtonian dots, even though the translator 
adopted a position in favour of the Newtonian notation. 12 Furthermore, all 
these periodicals included biographies and obituaries of foreign math­
ematicians as well as up-to-date information about mathematical works 
published on the continent. A study of the introduction of French 
mathematics into Great Britain in the late eighteenth century and early 
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nineteenth century should take into consideration the contribution of the 
editors of these periodicals in spreading information on French science. 
However, as we have seen, it is the Sandhurst-based Mathematical 
Repository which played the leading role in the reform of the calculus. 

We now turn our attention to another important source of popu­
larization: the encyclopaedias of the first half of the nineteenth century. 
Among these works, the following are particularly worthy of con­
sideration: the first five editions of the Britannica (1768-71, 1778-83, 
1797-1801, 1810, 1817), the Cyclopaedia edited by A. Rees between 
1802 and 1820, and the Pantologia edited by J. M. Good, N. Bosworth and 
o. Gregory between 1808 and 1813. The first parts of the Edinburgh 
Encyclopaedia edited by David Brewster began to appear in 1807/8 and it 
was completed in 1830. Some of the articles contained in these works are, 
in reality, long and elaborate essays. For our purposes it is important to 
note a few of them. 13 

Firstly, there is Wallace's article' Fluxions' (1810) in the fourth edition 
of the Britannica. 14 This was one of the best treatises on the calculus 
published in Great Britain before the translation of Lacroix's Traite 
EIementaire in (1816). Wallace introduced the calculus as a theory dealing 
with functions developable into Taylor series. But he mixed this Lagrangian 
approach with a limit definition of the fluxion. He ended his article with a 
fairly systematic treatment of fluxional equations, which cannot be found 
in any preceding British treatise. He gave general methods of integration 
for linear first order fluxional equations, and for some classes of higher 
order fluxional equations. He included also the criterion of integrability of 
'complete' fluxional equations. 

Later Wallace published a long article (1815) entitled 'Fluxions' in the 
Edinburgh Encyclopaedia. IS This was similar in content to his article in the 
Britannica, but it was written in differential notation and included a long 
bibliography offoreign and British works on the calculus. Wallace (1815) 
is in fact the first complete English treatise on the calculus written in 
differential notation. In introducing the differential notation into a treatise 
on the calculus, this long article, written by the Professor of Mathematics 
at the Royal Military College at Sandhurst, anticipated by one year the 
translation of Lacroix's Traite EIementaire (see chapter 9, section 9.5) 
undertaken at Cambridge by Babbage, Herschel and Peacock. 16 

Another important article, 'Function', in differential notation appeared 
in 1810 in the Rees's Cyclopaedia. Probably written by John Bonnycastle, 
Master of Mathematics at the Royal Military Academy in Woolwich, it 
dealt with the Lagrangian foundation of the calculus, already adopted by 
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Spence (chapter 7. section 7.5) and Woodhouse (chapter 9. section 9.2).17 
Woodhouse was described as a 'learned analyst'. The notation adopted 
was that used in Arbogast (1800). This article also included a treatment 
of the calculus of variations in Lagrangian form. Bonnycastle's recep­
tiveness towards the Lagrangian approach to the calculus is also evident 
from his Algebra (1813). For instance. when treating the binomial 
theorem, Bonnycastle cited Woodhouse (1803) and affirmed that a proof 
of this theorem should employ only the rules of algebra rather than the 
method of increments, the calculus of fluxions or some other' high origin' 
(Bonnycastle (1813). 2nd edn., II, p. 169). Furthermore, in the chapter 
'Functions' he gave an algebraical 'demonstration' of Taylor's theorem 
explicitly based on Lagrange (1797) (Bonnycastle (18 13). 2nd edn., II. 
pp. 308- 21 ). 

Other important articles on engineering. mechanics and astronomy 
were written by the professors at the military schools (e.g. Barlow's long 
articles in the Metropolitana, Gregory's in the Pantologia) and by the 
Scots (especially Robison and Playfair) in the early nineteenth-century 
encyclopaedias. Sandhurst, Woolwich and Edinburgh were the main 
centres for the writing of these essays. and this confirms the importance of 
these three 'schools' in the reform of pure and applied mathematics in 
Great Britain. 

8.8 The Royal Naval Academy at Portsmouth 

We cannot end this chapter without adding some information on the 
naval counterpart to Woolwich. The Royal Naval Academy at Portsmouth 
was founded in I 733 to instruct forty 'sons of noblemen and gentlemen' 
who entered at the age of thirteen. The Academy was attended by very few 
students; for instance, in 1773 there were only fifteen. It seems that in the 
Navy a system of patronage prevailed which gave to the Captains the right 
to have a 'retinue' on board from which the future officers were recruited. 
This system gave to the Captains several privileges; not least that of 
cashing the money intended for the Volunteers forming the 'retinue'. In 
1806 a reform was attempted. The Royal Naval Academy became the 
Royal Naval College: the number of students was increased. In 1816 it 
was established that there should have been one hundred during war-time 
and eighty in times of peace. But this attempt at reform failed. In 1829 the 
school was opened to train some commissioned officers. and ten years later 
it became an academy for adult education. 

The system of education at Portsmouth was indeed peculiar. In the two 
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years of their permanence in the Academy the students had to copy in 
good handwriting a • Plan of Learning' which included navigation, 
geometry, arithmetic, English, French, drawing, fencing and dancing: 
once this was finished and illuminated the boy could quit his alma mater 
holding the following certificate: 

Mr. has, in years----months, and days, finished 
the Plan of Mathematical Learning, and made a manuscript copy thereof: in 
consequence, he is judged qualified to serve H.M.Navy. (Quoted in Lewis (1939), 
p.89) 

When the 1806 reform occurred a new Head-Master was appointed: 
James Inman (I 776-1859). Educated at Sedbergh Grammar School as a 
pupil of John Dawson (1734-1820) (see chapter 5, note I), he entered St 
John's College, Cambridge, in 1794 and graduated B.A. in 1800. 
Subsequently he worked as astronomer on board of HMS Investigator. He 
wrote several books on navigation. Particularly fortunate were his Nautical 
Tables ... , (London, 1829) and his translation of Frederik Henrik Chapman's 
Treatise on Ship-Building ... , (Cambridge, 1820). In fact Inman established 
in 18 loa school of naval architecture. He also wrote a textbook to be used 
in the College entitled The System of Mathematical Education ... , (Portsea, 2 

vols, 1810, 1812). Even though this work is very elementary (it covers 
only elementary algebra and plane geometry), it testifies that Inman was 
trying to change the previous system based on the' Plan of Studies'. In fact 
he prepared the following curriculum for two senior classes: 

Fifth half-year: Fortifications, doctrines of projectiles and its application to 
gunnery: principles of fluxions and applications to the measurements of surfaces 
and solids: generation of various curves, resistance of moving bodies, mechanics, 
hydrostatics, optics, naval history and nautical discoveries. 

Sixth half-year: More difficult problems in astronomy, motions of heavenly 
bodies, tides, lunar irregularities: the . Principia' and other parts of Newton's 
Philosophy to those sufficiently advanced. (Lewis (1939), p. 91-2) 

This was too ambitious a target, taking into consideration the starting 
point. Michael Lewis comments: 

How did they do it? The age of the eldest scholar, we must remember, was 
somewhere between fourteen and a half and fifteen. So it would really be more 
apposite to ask, Did they do it? (Lewis (1939), p. 92) 

Two other mathematics masters at Portsmouth should be mentioned 
here. John Robertson (17 I 2-76), appointed in 1748 Master of the 
Mathematical School at Christ's Hospital and in 1755 Master of the Royal 
Naval Academy at Portsmouth. In 1766 he retired to become clerk and 
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librarian of the Royal Society. He was the author of The Elements of 
Navigation ... (17S4). George Witchell (d.178S) was appointed Master at 
Portsmouth in 1767. He is remembered in Cotter (1968), p. 226, as the 
inventor of a method for clearing lunar distances published in the Nautical 
Almanac for 1772.18 
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CAMBRIDGE AND DUBLIN (1790-1820) 

IN THIS final chapter we will consider the important contributions to the 
reform of the calculus which took place in Cambridge and Dublin. There 
is a link between the two universities, since John Brinkley, one of the most 
influential Dublin reformers, was educated at Cambridge and brought the 
heritage of Maskelyne and Waring to Ireland. Furthermore, both the 
Dublin and the Cambridge reformers were deeply concerned with the 
teaching of mathematics. Their attempt to reform the teaching of 
mathematics land the calculus in particular) was much bolder than that 
of Playfair in Edinburgh, while - as we have seen - in the military schools 
such a project could not be implemented. The Dublin group insisted more 
on the teaching of applied mathematics (mechanics, physical astronomy, 
optics, etc.), whereas the Cambridge group was definitely purist-algebraist. 
A distinction must also be made at the level of research: in Ireland the 
stimulus came from Laplace, while in Cambridge the reformers were 
followers of Lagrange. Scholars of William Rowan Hamilton's optics, 
quaternions and mechanics, as well as scholars of the algebras of Peacock, 
Boole and De Morgan, will find this distinction quite significant. 

9.1 Fluxions in Cambridge 

During the late eighteenth century, Cambridge did not appear a promising 
centre of mathematical reform. Notwithstanding the fact that mathematics 
had become the most important subject in the education and in the 
ranking of students, their curriculum did not include any of the advances 
made after the 17 20S. Research was not encouraged: mathematics was 
seen merely as a selective discipline which helped to develop the students' 
powers of reasoning. I 

Samuel Vince lI749-1821) and William Dealtry ll775-1847) are 
representative of this conservative trend. Vince, the son of a bricklayer, 
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was given local support to study at Cambridge. He graduated B.A. as a 
Smith's prizeman in 1775 and obtained an M.A. three years later. His 
main contributions were in mechanics and astronomy: as a math­
ematician he had a passing interest in the summation of series (1783), 
(1785) and integration (1786). In 1796 he succeeded Anthony Shepherd 
as Plum ian Professor of Astronomy. 2 

With his colleague James Wood (1760-1839), who later became master 
of St John's, Vince wrote The Principles of Mathematics and Natural 
Philosophy (Vince and Wood (1795-9)) in four volumes: Wood wrote the 
sections on algebra, mechanics (1796) and optics. Vince wrote the 
sections on fluxions (1795), hydrostatics and astronomy. As was usual, 
mathematics was not employed in the treatment of mechanics. The 
mechanics was somewhat in the style of Parkinson (1785), a textbook 
already in use in Cambridge, in which the three Newtonian laws were 
employed in a descriptive study of the . six machines', pendulums and 
Newton's three laws of motion. The optics reproduced some results of 
Smith (1738): the treatment was confined almost exclusively to 
geometrical optics and a description of optical instruments. The hydro­
statics was in part based on the early eighteenth-century Saunderson's 
lectures, 3 but Hamilton (1774) and Parkinson (1785) were also 
considered, as well as Jurin's researches into capillary tubes, (1744a) and 
(1744b), and Atwood's experimental lectures (1776). The astronomy 
dealt with positional and observational aspects and enabled the student to 
record the position of planets and stars in the sky. But no attempt was 
made to introduce a mathematical treatment of physical astronomy. 

Vince is also the author of a much larger astronomy text in three bulky 
volumes (1797,1799,1808) in which he showed a very good knowledge 
of contemporary work in the field. This text was not a work for students 
but for professional astronomers, and it proved to be useful for the working 
astronomer. From the point of view of mathematics, however, it did not 
surpass the smaller treatise on astronomy published in Vince and Wood 
(1795-9). Vince concerned himself with astronomical tables but not with 
the underlying physics and mathematics. 

Vince's Principles of Fluxions (1795) found a natural place within the 
scarcely original course' designed for the use of students in the University'. 
A comparison with mid-century treatises would show that there was 
nothing new to be found in Vince's textbook. But the system of education 
and examination in Cambridge did not require any novelty. In fact, 
treatises such as Maclaurin (1742) or Simpson (1750c) are much more 
interesting since they include original research, while Emerson (1743) 
could be read as an advanced continuation of Vince's Principles of Fluxions 



126 PART III: THE REFORM 

(1795). It seems clear to me that the potential readers Vince and Wood 
had in mind were those among the Cambridge students who were 
ambitious enough to desire a first class in the Tripos. 

William Dealtry (1775-1847), a Cambridge graduate who was several 
times moderator at the examinations and taught mathematics from 1808 
to 1813 at the East India Company College, Haileybury, undertook the 
task of making a copy. His textbook on fluxions, Dealtry (1810), not only 
had the same title as Vince (I 795) but the contents were identical. A 
comparison of the two would show that many' Examples' are taken word 
for word, with the same x's, z's and y's, from Vince (1795). Dealtry (I8IO) 
was the last treatise on fluxions. It ran to a second edition in 1816 while 
the fifth edition of Vince (1795) appeared in 1818.4 

9.2 Robert Woodhouse 

Edward Waring, the Lucasian Professor, had died in 1798 a lonely and 
misunderstood man who exerted very little influence on research into the 
calculus and who was practically ineffective as a teacher. After him the 
next notable mathematician in Cambridge was Robert Woodhouse 
(1773-1827), the son ofa linen draper, who graduated B.A. in 1795 and 
M.A. in 1798. He remained at Cambridge as a fellow of Gonville and Caius 
College and was for several years Moderator of the Tripos. He was 
appointed Lucasian Professor in 1820 and Plum ian Professor of 
Astronomy and Experimental Philosophy in 1822. He also became 
superintendent of the new university observatory: he therefore devoted his 
last years mainly to astronomy.5 

Woodhouse's early researches were concentrated on the pure calculus. 
In (1801 b) he dealt with . Viviani's problem' on the squaring of portions 
of the surface of a sphere. This problem became famous among the British; 
it was treated for instance by Brinkley (I802b). Another important area of 
research encompassed elliptic integrals: Woodhouse (1804) summarizes 
without any claim of originality the researches carried out into this subject 
by Euler, Legendre, Lagrange, Landen, Ivory, Wallace and Brinkley. 
Woodhouse shows a very extensive knowledge of the literature, even 
though he is not aware of Legendre (1794) which was to be translated in 
the Mathematical Repository (see chapter 8, section 8.5). 

Beside these two minor papers Woodhouse contributed to the 
Philosophical Transactions with (I801a) and (1802) on the nature of 
mathematics and the foundations of the calculus. Later, in Principles of 
Analytical Calculation (1803), Woodhouse developed a systematic attempt 
to provide a foundation for the calculus which exerted a great influence in 
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Great Britain. Indeed, in the years 1801-3 he launched a programme of 
research which was still alive in the 1840s. 

Woodhouse (180Ia) is concerned with the legitimacy of the use of 
complex numbers. Even though handling complex numbers was an 
important practice in eighteenth-century mathematics, the status of the 
. roots of negative quantities' was still uncertain. This does not mean that 
there was consensus on this matter. In particular, the situation in Great 
Britain was a varied one. We have already met Playfair (1779) in which 
the geometrical analogy between the circle and the hyperbola was used to 
explain the meaningfulness of the imaginaries. Extremists such as William 
Frend and Francis Maseres tried to build up a theory of algebraic equations 
confined to real solutions. On the other hand, mathematicians such as 
Simpson, Landen and Waring employed complex numbers in their 
researches. Woodhouse in his (180Ia) was therefore touching on a 
controversial topic. We would not need to concentrate on this aspect of 
Woodhouse's work had it not had a relevant influence on his conception 
of the calculus of fluxions. 

According to Woodhouse the operations on imaginaries can be justified 
via a formal use of infinite series. If the expansion of eX, when x is a real 
number, is extended for xi, then: 

e i = I + xi - x2
/ 2 ! - X3i /3 ! + x4 / 4'! + .... 

This extension of a formula which holds for real numbers to complex 
numbers is typical for Woodhouse ofthe development of mathematics. For 
instance he writes: 

But nothing can be affirmed concerning the product of (a + bi) and (c + di) [ ... ]; and 
all that can be meant by the form (a + bi) (c + di) is that, the characters are to be 
combined after the same manner that the signs of quantity are; so that (a+bi) 
(c+di) and ac+adi+cbi-bd are two forms equivalent to each other, not proved 
equivalent, but put so, by extending the rule demonstrated for the signs of real 
quantities. (Woodhouse (180Ia), p. 93) 

A'similar substitution for - xi in e and a termwise subtraction yields the 
result: 

This is just one example of the way in which, according to Woodhouse, all 
the theorems in mathematics should be treated: they should be reduced in 
terms of algebraical operations with infinite series. All the mathematical 
functions such as sin(x), exp( - xi), etc., rather than having a geometrical 
or a mechanical meaning, are just abbreviations of their power series 
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expansions. The calculus is nothing other than an algebraical handling of 
infinite series. Some of the operations of the calculus can be interpreted in 
geometry or mechanics, some cannot; but this is incidental and does not 
concern the mathematician. Hence, for Woodhouse, 

By the strange way of determining the meaning and value of analytical expressions 
from geometrical considerations, it should seem, as if certain curves were believed 
to have an existence independent of arbitrary appointment. (Woodhouse (1802), 

P.92n) 

At this stage what Woodhouse needs is a proof that every function has 
a power expansion, which is the true object of algebraical manipulations. 
He thought that a proof was feasible in which only algebra was employed. 
From this point of view the calculus would have received, as in John 
Landen's Residual Analysis (1764), an algebraical foundation. Woodhouse 
attempted this grandiose project in his Principles of Analytical Calculation 
(18o 3). The novelty of this work, which lies in the intent to supersede the 
fluxional tradition, was evident even in the notation. Woodhouse employed 
the differential notation and also Arbogast's D for the derivative operator. 

Lagrange in his (I 797) had already attempted an algebraical proof of 
Taylor's theorem. This work was known to Woodhouse, who reviewed it 
in (1799),6 and most probably stimulated not only the Principles of 
Analytical Calculation (1803), but also his papers on complex numbers 
(I801a) and the nature of mathematics (1802). Lagrange assumed that 
f(x+i) = f(x)+iP, where P is finite when i = 0. P is a function of x and i 
and therefore we can write P = p + iQ, where p is the value of P when 
i = 0. By reiterating this process Lagrange obtained: 

f(x+i) =f(x)+ip+fq+ .... 

He then defined p as the derivative of j(x), while the integral was defined 
as the inverse of the derivative. 

We can end our analysis of Lagrange (1797) here since Woodhouse 
already had a good objection: the definition of p does not avoid a limit 
process: 

p = f'(x) = P when i = 0, where P = (J(x + i) - f(x))/i. 

However, Woodhouse did not completely abandon Lagrange's pro­
gramme. He agreed with Lagrange in considering both the use of 
differentials and that of limits as ungrounded. In fact, Woodhouse praised 
Berkeley's criticisms of the calculus, and in the preface to his (18°3) he 
endorsed the arguments against Newton and Leibniz contained in The 
Analyst (1734): 
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If, for the purpose of habituating the mind to just reasoning, (and mental discipline 
is all the good the generality of students derive from the mathematics) I were to 
recommend a book, it should be the Analyst. Even those, who still regard the 
doctrine of fluxions as clearly and firmly established by their immortal inventor, 
may read it, not unprofitably, since, if it does not prove the cure of prejudice, it will 
be at least the punishment. (Woodhouse (1803), p. xviii) 

Woodhouse's programme therefore coincided with that of Lagrange in 
many points. He thought that the concepts of motion, limit and 
infinitesimal were to be avoided, and he believed that the calculus rested 
upon an algebraical demonstration of power series expansions. But 
Lagrange was too hasty in his generalizations: according to Woodhouse 
one had to prove algebraically that each function to be employed in the 
calculus had a Taylor expansion. Once this had been done, one could 
extend the Taylorian expansions to complex variables and obtain all the 
results of the calculus by summing and multiplying infinite series. 

The problem of convergence was of secondary importance according to 
Woodhouse: the arithmetical interpretability of series as summations was 
just a particular application of the • analytical calculus'. Series had to be 
considered abstractly as symbolical expressions which exhibit the formal 
properties of functions. We have seen an example of this procedure in 
Woodhouse's papers on imaginary quantities. The Principles of Analytical 
Calculation (1803) is a collection of examples in which the following steps 
occur in succession: 

(I) prove that the functions (e.g. sin(x), aX) have a Taylor expansion, 
(2) extend the Taylor expansion to complex values and to values which 

do not belong to the disc of convergence, 
(3) manipulate algebraically the series, 
(4) as an illustration interpret, if possible, the algebraical results in 

arithmetic, mechanics or geometry. 

As we will see (section 9.5), Woodhouse's programme had a great 
influence in Cambridge and in Great Britain in general. For instance, many 
of George Peacock's ideas can be traced back to Woodhouse (18°3).' 

Woodhouse himself recognized his indebtedness to Lagrange (1797) and 
Arbogast (1800). Through him the British came in contact with the 
Lagrangian algebraical school. As a matter of fact, this school was 
declining on the continent and it is perhaps unfortunate that so many 
British mathematicians followed Woodhouse in imitating the Lagrangian 
school. An attempt to reform the fluxional calculus led once again to a 
condition of isolation. But why was the Lagrangian school chosen from 
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among the various competing continental schools? It is probable that for 
British mathematicians this was the easiest step to take. In their 
eighteenth-century tradition series played a prominent role: Newton's 
calculus was a calculus of . series and fluxions'. Banishing the kinematical 
calculus of fluxions left one with a • calculus of series' independent of the 
ideas of motion, limit and infinitesimal moment. For the fluxionists . pure 
analytics' coincided with the use of infinite series. When fluxionists 
abandoned geometrical proofs it was in order to work with power 
expansions. Power series were used in the study of extremals, curvatures 
and so on, as well as in the' integration' of fluxional equations. Hutton's 
remark is typical of this tradition: 

Whenever, in analysis, we arrive to a complex function or expression, either 
fractional or transcendental; it is usual to convert it into a convenient series, to 
which the remaining calculus may be more easily applied. [ ... ] If, therefore, we 
only so far change the received notion of a sum as to say, that the sum of any series, 
is the finite expression by the evolution of which that series may be produced, all 
the difficulties [ ... ] vanish of themselves. For, first, that expression by whose 
evolution a converging series is produced, exhibits at the same time the sum, in the 
common acception of the term; neither, if the series should be divergent, could the 
investigation be deemed at all more absurd. or less proper. namely. the searching 
out a finite expression which. being evolved according to the rules of algebra. shall 
produce that series. And since that expression may be substituted in the calculation 
instead of this series. there can be no doubt that it is equal to it. (Hutton (1786). 
p. 173) 

Here Hutton is simply reporting an idea already expressed by Euler. A 
divergent series, even though it has no sum. can be taken as algebraically 
. equal' to a certain function. According to Hutton the algebraical use of 
series was a permissible technique of . analysis'. Furthermore. power series 
were understood as . infinite' polynomials: their study was part of algebra. 

It is with the same methodology that Woodhouse affirmed that 
convergence is required only in the last stage of calculation. i.e. when the 
algebraical results are interpreted as numerical results: 

the convergency of series is only to be considered. at the end of the calculation. it 
is of no import to know. whether (a+x)m converges or not: for analytically. it is 
the evolution and the law of formation of the coefficients. that it is necessary to 
know. (Woodhouse (1803). p. 162) 

Adopting the Lagrangian foundation of the calculus was therefore a way 
of systematizing the formal use of series which was already operating in 
the eighteenth-century calculus. This aspect of the Lagrangian meth­
odology was particularly consonant with the British fluxional tradition. 

Woodhouse's reform of British mathematics continued with two 
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textbooks: (1809) is a textbook on trigonometry in which Woodhouse 
attempted to teach the subject analytically and not geometrically as was 
usually the case in Britain. This textbook became very popular and was 
widely read. Woodhouse (1810) is an historical presentation of the 
calculus of variations from Johann Bernoulli to Lagrange. This text was 
extremely important because, as we know, the calculus of variations was 
almost entirely unknown in Great Britain. Woodhouse also wrote three 
texts on astronomy. Of particular importance was Woodhouse (1818) on 
physical astronomy in which the main mathematical techniques of 
Laplace were presented. So after an early period in which he developed a 
personal view on the foundations of the calculus, Woodhouse devoted 
himself to the introduction into Britain of Eulerian analytical trigonometry, 
the Lagrangian calculus of variations and Laplacian physical astronomy. 
He deserves to be remembered as one of the first and most influential 
reformers of British mathematics. 

9.3 Ireland in the eighteenth century 

With the exception of George Berkeley (and his scarcely original opponents 
Jacob Walton and John Hanna), no interest in the calculus emerged in 
Ireland during the eighteenth century. Despite this, the influence of Irish 
science in Great Britain was not negligible. Hugh Hamilton (1729-1 805), 
Erasmus Smith Professor of Natural Philosophy, wrote an excellent treatise 
on conics (1758), while Richard Helsham's (1682-1738) (who was 
Donegal lecturer in mathematics) lectures on natural philosophy (1739), 
read in Trinity College (Dublin), were still widely used in the 1800s. 

An effort to revive the study of mathematics was made in the 1760s by 
one Joseph Fenn, who described himself in the title-page of his book (1769: 
1772) 'Professor of Philosophy in the University of Nantes '. In 1768 he 
was employed by the Dublin Philosophical Society to teach a course which 
included 'mathematics, the Physical System of the World, the Moral 
System of the World, Military Art, Merchantile Art, Naval Art, Mechanic 
Art' (Fenn (1769, 1772), I. p. iii).8 Fenn wrote two volumes for his course 
'to be given in the Drawing-School' in Dublin. In the preface he 
emphasized the importance of the 'analytic art' as cultivated by the 'first 
mathematicians in Europe'. The study plan in Fenn's preface indicated 
'Sublime Geometry' which' comprehends the inverse method of Fluxions, 
and its application to the Quadrature of Curves, the Cubing of Solids, &c.' 
with the improvements of 'Cotes, Bernoully, Euler, Clairaut, d'Alembert, 
M'Laurin, Simpson, Fontaine' (Fenn (1769,1772), I; pp. xift'). This was an 
outstanding project for the Great Britain of the 1 760s: a project which was 
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not fulfilled in the slightest. Fenn's two volumes consisted of an 
introduction to Euclid's Elements and the 'Elements of numeral and 
specious arithmetic'; in this last section some space was given to Newton's 
method of reversion of series. 

In 1782 the Royal Irish Academy was founded, and in 1787 a series of 
volumes of Transactions was launched. Chairs of Mathematics and 
Astronomy were founded in the University of Dublin in 1762 and 1774, 
respectively. These Chairs were occupied, however, by third-rank 
mathematicians such as Richard Murray (d. 1 799), William Magee 
(1766-1831) and Henry Ussher (d.1790). The first six volumes of the 
Transactions of the Royal Irish Academy (1787-97) reflect the very poor 
level of Irish mathematics in the second half of the century. A few papers 
by Matthew Young (1750-1800) on series and equations could have been 
easily written a century before. Young, however, was mainly interested in 
sound (1784). William Hales (1747-1831), Professor of Oriental 
Languages and Divinity at Dublin University, wrote a 'conservative' 
vindication of the Newtonian fluxional calculus in (1800), a work 
concerned with foundations. Hales also wrote on sound (1778), the 
motion of planets (1782) and equations (1784). Other texts on optics and 
natural philosophy (see, e.g., Stack (1793), Miller (1799) and Young 
(1800)) indicate the interest of the Irish in science, but there was no use 
at all of mathematics. 

9-4 The reform of mathematics at the University of Dublin 

A great change occurred in 1790 with the election of John Brinkley 
(1763-1835) to the Andrews Chair of Astronomy at Trinity College, 
Dublin. 9 Brinkley was born in England and was educated at Cambridge 
where he graduated B.A. in 1788 as first Smith's prizeman. like Robert 
Woodhouse, Brinkley was influenced by Waring and was interested in 
astronomy. In the year 1787-8 he worked as the assistant of Nevil 
Maskelyne. Later in 1792 he became first Astronomer Royal of Ireland. 
The strongest influence on Brinkley was to be exerted by Laplace: as in the 
cases of Playfair and Ivory, it was the Mecanique celeste which stimulated 
Brinkley's approach to the continental calculus. 

Brinkley's researches appeared almost exclusively in the volumes of the 
Transactions of the Royal Irish Academy. He was virtually the only one who 
contributed on mathematics up to the mid-1820S when William Rowan 
Hamilton began his career. Brinkley (1800a) and (1800b) were inspired 
by Waring's Proprietates Algebraicarum Curvarum (1772); they dealt with 
trigonometric formulas and Cotes's theorem. The paper (I 800c) was based 
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on Taylor's theorem. Brinkley claimed that he had anticipated Arbogast 
(1800) (one of Woodhouse's sources in (1803)), a treatise in which the 
calculus was based on Taylorian expansions. In a later paper (1807) he 
dealt with the formula: 

which had been used by Lagrange, Laplace and Arbogast, expressing it in 
Newtonian notation as: 

As we will see below, this trend of research was attributed great 
importance by the Cambridge reformers of the Analytical Society. Brinkley 
(1802a) was a review of the principal methods of dealing with the motion 
of the apsides. Brinkley criticized Walmesley's defence of Newton's method 
of neglecting the component of the disturbing force of the Sun 
perpendicular to the Moon-Earth radius vector, and reached an 
appreciation of the more elaborate work of Clairaut (1752). No great 
originality is to be found either in (1803a), which is a review of the various 
solutions of Kepler's problem. The great interest of the British (e.g. Landen, 
Wallace, Ivory) in elliptic integrals was the motivation behind (1803b), 
but here, despite his awareness of Lagrange and Legendre, whose works 
are cited, Brinkley does not contribute any new results. 

None of these early papers shows any great originality, but rather a 
good knowledge of continental literature. They are written in fluxional 
notation, but the conception is completely continental. Brinkley sometimes 
embraces a Lagrangian operational view of the calculus, but more often he 
keeps close to a differential approach. In a later period Brinkley devoted his 
attention to improving details of Laplace's Mecanique. In (1820a) he 
modified Laplace's method of approximating the mean motion of lunar 
perigree, while in (1820C) he simplified Laplace's method of calculating 
cometary paths. 

As a teacher and reformer of mathematics Brinkley exerted a certain 
influence in the University, even though he resided outside Dublin at the 
Dunsink Observatory. As Playfair had done in his Outlines of Natural 
Philosophy (1812-14), in Elements of Astronomy (18n) Brinkley in­
troduced the students to Laplace's theory of planetary motions. In doing so, 
Brinkley certainly improved the level of teaching in Dublin, even though 
he avoided mathematical technicalities. His efforts were later backed by 
Bartholomew lloyd (1772-1837), who succeeded Magee in the Chair of 
Mathematics. It is lloyd that introduced Lacroix's treatise (1802) and 
Poisson's textbook on mechanics (18II) into the curriculum at Trinity 
College. Therefore, while it was in the 1790S with Brinkley that Dublin 
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students began reading about physical astronomy, the differential calculus 
arrived with Lloyd in the 18 lOS. It is important to note that in Ireland 
there was no passage from the study of fluxions to the study of 
differentials; instead Dublin University went from the absence of calculus 
to the differential calculus. 10 

The major interests in Dublin were, however, not in the calculus: 
treatises were written on astronomy, analytic geometry and mechanics. 
The differential calculus was taught especially in the study of mechanics. 
For instance, Thomas Robinson's System of Mechanics (1820), a treatise 
intended for the students at Dublin, was based on Poisson (18II). Each 
chapter was followed by a mathematical appendix for the more interested 
students. Robinson's appendixes are written in differential notation; the 
calculus of variations is sometimes given in a Lagrangian style, while 
d'Alembert's principle is often used in the treatment of the dynamics of 
rigid bodies. We should note that in England the first non-Newtonian 
presentations of mechanics were to be found in a translation of two 
textbooks by Venturoli ((1822) and (1823)), in which the principle of 
virtual velociti~s was employed, and in the first editions of William 
Whewell's Elementary Treatise on Mechanics (1819) and Treatise on 
Dynamics (1823). Chapter IX of (1819) was devoted to virtual velocities, 
while in Book III of (1823) Whewell employed 'd'Alembert's principle' in 
the study of rigid bodies, and in Appendix H he compared it with other 
principles in mechanics. Later on Whewell returned to Newton's Principia 
and always declared his opposition to the continental approaches to 
mechanics. 

Robinson (1820) is representative of the way in which the reform of 
mathematics took place in Dublin. The subjects of interest were Laplacian 
astronomy, Monge's geometry and Poisson's mechanics; mathematics 
was studied within this applied context. The fruits of this reform came in 
the next generation with Humphrey Lloyd, MacCullagh and William 
Rowan Hamilton. 1 1 

An 'Irish' treatise on the differential and integral calculus appeared only 
in 1825. The author, Dyonisius Lardner (1793-1859), was educated at 
Trinity College, Dublin. In 1827 he was appointed to the Chair of Natural 
Philosophy and Astronomy at the newly founded University of London 
(which was to become University College). Later he became a prolific 
scientific writer and a successful publisher. His Elementary Treatise on the 
Differential and Integral Calculus (1825) was divided into four parts: 
differential calculus, integral calculus, calculus of variations and finite 
difference equations. Lardner l 1825) can be seen chronologically as the 
third • continental' treatise published with the aim of reforming the 
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calculus in Great Britain. The first, Wallace (1815), came from the Military 
School of Sand hurst ; the second, Lacroix (18 16), was the translation of 
the second edition of Lacroix's Traite EIementaire (1802). This translation 
was prepared at Cambridge by a group of young reformers to whom we 
will now turn our attention. 

9.5 The Analytical Society 

When, in 1812, the Analytical Society of Cambridge was established, the 
time was ripe for a shift towards the continental calculus and mechanics. 
French work in the field of engineering was followed by the Woolwich 
men. Legendre's elliptic integrals were considered by Wallace and Ivory in 
the Transactions of the Royal Society of Edinburgh and the Mathematical 
Repository, and by Hellins and Woodhouse in the Philosophical Transactions. 
Lagrange's and Arbogast's algebraical foundations of the calculus were 
adopted by Brinkley, Woodhouse, Bonnycastle and Spence. 12 Most of all, 
Laplace's Mecanique provided a stimulus to learn French mathematics. The 
works of Brinkley and Ivory were almost entirely devoted to improving 
aspects of Laplace's masterpiece. John Toplis (1805) and Playfair (1808) 
indicated Laplace as the model to be followed and regretted the gap which 
separated French and British mathematical research and teaching. French 
science in general was colonizing British scientific journals and British 
encyclopaedic works. 

Even though Cambridge educated men such as Brinkley and Woodhouse 
had participated with enthusiasm in the reforming of British mathematics, 
little effort was made to change the teaching at Cambridge. Bright students 
were therefore in a mood of protest. A group of undergraduates, among 
whom were most notably George Peacock (1791-1858), Charles Babbage 
(1791-1871) and John Herschel (1792-1871), founded in 1812 the 
. Analytical Society'. Its objective was to propagate the heresy of . pure d­
ism against the Dot-age of the University'. I3 A project was set up to 
translate the second edition of Lacroix's short treatise on the calculus 
(1802): the aim of the Analytical Society's members was clearly that of 
changing the kind of education provided at Cambridge. However, the 
Analytical Society collapsed around 1814, having produced only a volume 
of Memoirs ([Babbage and Herschel] (1813)). The opposition was very 
strong. The pedagogical ideas which were prevalent in the early nineteenth 
century (and still existing in Victorian Britain) did not allow them to 
. reduce' a university to a centre for research in pure mathematics. Robert 
Woodhouse, who confined his interest in Lagrangian mathematics to his 
private research, did not provoke any scandal: he did not question the 
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purpose of Cambridge education. The Analytical Society's programme, on 
the other hand, caused a loud outcry. Lacroix's treatise was intended for 
the students at Cambridge, as were the volumes of exercises on differential 
and integral calculus, functional equations and finite differences, Babbage, 
Herschel and Peacock (1820), which were published in 1820. After the 
collapse of the Analytical Society these works were published through the 
efforts of Babbage, Herschel and Peacock. After 1820 only Peacock 
remained at Cambridge; he developed an approach to algebra which had 
many points of contact with Woodhouse's foundation of the calculus, 
Herschel continued his father's work on astronomy; Babbage was engaged 
in work on his difference and analytical engines, The reform of 
mathematical education at Cambridge went ahead in a more moderate 
and tortuous form than had been wished by the group of undergraduates 
who had got together in 1812. '4 

The struggle for the reform of mathematical education at Cambridge has 
been mistakenly viewed as a process in which British mathematics was 
successfully reformed. Historians largely based this view on recollections of 
former members of the Analytical Society who liked to describe themselves 
as the originators of interest in continental mathematics and the revival of 
research in the first half of the nineteenth century. This is clearly false. 
They were anticipated by Woodhouse at Cambridge, and as we have seen 
there were several other centres of reform as equally important as 
Cambridge which should be considered. 

However, Babbage, Herschel and Peacock were of great importance for 
the early nineteenth-century British calculus. Their contributions did not 
consist, as is usually maintained, in the introduction of differential 
notation into Great Britain. The shift to differential notation was already 
underway in the first years of the century. The contributions of Babbage, 
Herschel and Peacock are twofold. 

In the first place, they reinforced the acceptance of the Lagrangian 
algebraical foundation of the calculus, already espoused by Brinkley, 
Woodhouse, Spence and Bonnycastle. (Lacroix's treatise (1802) was not in 
fact a Lagrangian treatise, but rather a melange of methods in which limits 
were prominent; but the translators added Lagrangian notes to it.) 
Accepting the Lagrangian view on the nature of the calculus had many 
consequences on the way in which research was done, especially in the 
case of infinite series. The difficulties that many British Lagrangians had in 
understanding the importance of Cauchy's treatment of series depended on 
the way in which they understood the problem of convergence as not 
belonging to the 'pure' calculus.'s Furthermore, Cauchy's limit-based 
calculus was felt by the British Lagrangians to be a revival of the 
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fluxionists' theory of prime and ultimate ratios. The slow acceptance of 
Cauchy's calculus in Great Britain had its roots in the domination of the 
Lagrangian tradition promulgated by Babbage, Herschel and Peacock. 

But the second and most important contribution from the Analytical 
Society's members was that they initiated a trend of research which 
characterized much of British mathematics up to Cayley and Boole, The 
Memoirs of the Analytical Society were centred on the calculus of operators 
and on functional equations. 

The calculus of operators dealt with the algebraical properties of the 
symbols of derivative and integral, and the related symbols of finite 
difference and summation. From this study it was possible to develop 
symbolic methods of integration of differential and difference equations. 
For instance, a differential equation was written, 'separating the symbols 
of operation from that of quantity' as f(D)y = X. Then f(D) was 
manipulated algebraically in order to find the inverse, r (D). In the simple 
case (D2-(a+b)D+ab)y = X, treating f(D) as a polynomial in D, it is 
possible to obtain: 

«D-atl -(D-btl)X 
y= b . a-

In the case of finite difference equations, a significant role was played by 
the symbolic equivalence: 

This last result, due to Lagrange, was treated in fluxional notation in 
Brinkley (1807). As a matter of fact, the application of the calculus of 
operators to the theory of integration originated mainly from Lagrange. 
His research was continued by a group of French mathematicians which 
included L. F. A. Arbogast, F. J. Servois, J. F. Fran«;ais and B. Brisson. 
Nevertheless, on the continent the Lagrangian school never played a 
prominent role. In Great Britain, on the contrary, the introduction of 
operational methods with Brinkley (1807), Spence (1809), the Analytical 
Society's Memoirs and the notes and appendixes to Lacroix (1816) 
launched a programme of research which continued up until the I 840S. 16 

In addition, use of the calculus of functions started in Great Britain with 
the Analytical Society's members, especially Babbage. The problem of 
recognizing the form of the arbitrary functions which occur in the 
integration of partial differential equations was the motivation for 
developing a theory of functional equations. Functional equations 
considered in this early period had the quite general form: 
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where ljf is an unknown. These equations were reduced to finite difference 
equations for fm(x) = x+mh. So the calculus of functions was viewed as 
an extension of the calculus of finite difference operators. The importance 
given to this theory is demonstrated by the inclusion in the Encyclopaedia 
Metropolitana of a lengthy essay on 'functional equations' by the young 
Augustus De Morgan (1836). 

From the 1730S to the 1760s there was a great production of 
Lagrangian mathematics in England. I have already pointed out, in the 
case of Woodhouse, that the Lagrangian foundation of the calculus on 
series was, to a certain extent, compatible with the fluxional tradition: to 
banish kinematics from the method of series and fluxions meant to be left 
with only series. Undoubtedly, there is a great epistemological difference 
between the two methods, but at the level of mathematical practice the 
algebraical manipulations with series of the Lagrangians were, to a certain 
extent, similar to the methods employed by the analytical fluxionists, such 
as Simpson, Landen and Waring. But the Analytical Society's members 
brought into Britain not only the Lagrangian use of series, but especially 
operational methods and functional equations. These techniques became 
extremely popular in Britain, as the reader of the Cambridge Mathematical 
Journal knows very well. Hundreds of papers on solving differential 
equations by operators were published. The reform of mathematics which 
took place in Cambridge had the effect of diverting the attention of British 
mathematicians (or should we still call them' philomaths'?) from fluxions 
to Lagrangian methods. The main reason for the success of these 
techniques is that they were easy to learn and offered immense possibilities 
of dull proliferation. Furthermore, the followers of Babbage, Herschel and 
Peacock (who, by the way, very soon realized the sterility of their 
infatuation with Lagrangian analytics), considered the calculus of 
operators as a 'new continental method', and they were clearly excited to 
participate in this Renaissance. 

The researches of the British Lagrangian school on the calculus of 
operators and the calculus of functions were the origin of important 
contributions to algebra and logic, such as Peacock's' pure algebra', and 
De Morgan's and Boole's algebras of logic. But the predominance of the 
algebraical approach to the calculus had its own drawback: it did not 
allow many British mathematicians influenced by the Analytical Society to 
appreciate the importance of Cauchy's rigorization of the calculus, which 
was motivated by the desire to avoid the' generalities of algebra'. The shift 
from the fluxional calculus to the Lagrangian calculus, which marks the 
definitive death of the Newtonian tradition, once again left the British 
isolated. 
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HAS MY research been successful in refuting the accepted views on the 
crisis of the Newtonian calculus? None of these views corresponds to the 
image we obtain from a close scrutiny of the fluxional texts. Nevertheless, 
the label . dotage' still attaches to the treatises on fluxions we have 
encountered. A crisis did occur, but it set in later than is usually thought. 

During the first four decades of the eighteenth century the calculus of 
fluxions was developed by men such as Cotes, Taylor, Stirling and 
Maclaurin. With their work they made original and important con­
tributions to the fields of integration, series and applied mathematics. The 
British began losing ground in the 1 74os. In the mid-eighteenth century 
only Simpson and Landen achieved new results. Very soon many British 
mathematicians realized the gap which separated them from the 
continentals and several attempts were made to change this situation of 
isolation. We have seen how slow and complex was this process of reform, 
which began with Simpson, Landen and Waring, and was continued 
especially by Playfair, Ivory, Wallace, Woodhouse, Brinkley and the 
Analytical Society's fellows. 

The era of the Newtonian calculus cannot be simply described as a 
period of decline. It was a period of the history of British mathematics 
which began with successes, suffered a period of crisis, and ended with 
serious attempts to reform. 

In what exactly consisted the crisis? At the beginning of the century 
British mathematics was in close contact, and sometimes in bitter 
competition, with the rest of Europe: but by the middle of the century it 
was almost completely separated from the continent. The works of 
continental mathematicians were not understood in Britain, while the 
works of the British aroused little interest on the continent. 

We have to realize that as the century progressed the continental 
calculus underwent deep changes. A calculus of variable quantities was 
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replaced by a calculus of multivariate functions. This resulted in new 
perspectives and new problems. First of all it was necessary to codify the 
basic rules of the direct method of partial differentiation, such as o/oxoy = 
o/oyox (a relation which was understood as universally true). Secondly, 
the inverse method of integration produced solutions of partial differential 
equations, the investigation of multiple integrals and contour and surface 
integration. The development of these tools had enormous consequences 
on the way in which mechanics could be mathematized. In turn 
mechanics provided a stimulus to perfect the new methods of the calculus 
of multivariate functions and the calculus of variations. 

The British almost completely missed these new developments. This was 
very sad, since several aspects of Newtonian mathematics were well 
adaptable for the change. Indeed the concept of fluent was closer to that 
of function than the concept of differential; but the concept of function 
appeared only sporadically, in the works of Landen and Spence. Further­
more, partial differentiation could be achieved in the context of the 
Newtonian calculus, and here some evidence is available. Techniques 
analogous to partial differentiation (in the context of total differentials and 
multiple integration) were present in the works of some of the fluxionists. 
When fluxionists considered an expression involving more fluent quantities 
they read it as a function of time: 

F(x(t), y(t), z(t), ... ). 

Taking the fluxion meant taking the total differential. and, of course, 
expressions equivalent to partial differentials occurred in it. Several 
fluxionists used to begin by stating that' all the fluents except x' were to 
be considered as constants: then one could take the fluxion by implicit 
differentiation as a function of time. This process was repeated for y, z, etc. : 
this is how the terms of the total differential were obtained. However, there 
was no specific symbol for partial differentiation, such as Euler's bracketed 
(dj/dy), and the properties of partial differentiation were not studied. The 
fluxional equivalent of partial differentiation was not recognized as a 
mathematical concept whose properties could be studied, but it was 
understood as a tool in the algorithm employed for calculating total 
differentials. 

Also the fluxional equivalent of multiple integration was employed by 
the British. It was quite natural to take, for instance, F(x(t), y(t)) first as an 
expression in which only y is flowing. The first fluent of it, fFdy in 
Leibnizian notation, could then be considered as an expression in which 
only x is flowing, and the fluent was calculated again: ffFdydx. As such, 
partial differentiation and multiple integration had been used since the 
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times of Newton in calculating total differentials and volume integrals. 
However, contour and surface integration, partial differential equations 
and the calculus of variations were never understood by the British in the 
eighteenth century. 

Why did the British stop there? There is not an easy answer to this 
question. Part of the difficulty in finding an answer probably lies in the way 
in which eighteenth-century calculus is viewed. According to the standard 
view, after the dramatic' discovery' of the calculus all that the eighteenth­
century mathematicians could do was to extend the boundaries of the 
calculus, in a haphazard process of colonizing new areas and new 
formulas which were unscrupulously conquered and added to the body of 
mathematical knowledge. Only in the nineteenth century would there be 
another foundational reworking, with Cauchy's rigorization of the 
calculus. 

However, it seems to me that the eighteenth century was not a period 
of Kuhnian normal science (to use a fashionable terminology): there was 
no simple puzzle-solving on the part of Euler, for instance. During this 
century the calculus was transformed: in a way a new calculus was 
created. 

The difficulties that many gifted British mathematicians had in 
understanding this new calculus should therefore be understood in this 
perspective. The problems and misunderstandings which emerged in the 
process of translating the continental calculus in the language of fluxions 
show us the extent of our underestimation of the novelty of eighteenth­
century calculus. 

Finally, let us consider the principal characteristics of the reforms of the 
calculus. 

A new consciousness of the importance of reforming the Newtonian 
tradition at the levels of both research and teaching came from France at 
the turn of the century. The Mecanique celeste began to be published in 
1799. Laplace had achieved outstanding results and was seen as a second 
Newton. His researches were received in Great Britain as a solution of 
problems which were left to be answered in the Principia by Newton. 
Reading Laplace, and hopefully understanding it, became imperative. 

In the reform which followed were involved several schools and 
mathematicians. We classified them in the four groups geographically 
situated in Scotland, the military schools at Woolwich and Sandhurst, 
Dublin and Cambridge. 

In Scotland and in the Royal Military College at Sandhurst the concern 
with Laplacian astronomy was at the level of research and the teaching 
was little changed. A radical reform of the teaching motivated the Dublin 
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and Cambridge reformers. The Dublin group insisted more on the teaching 
of applied mathematics, whereas the Cambridge group was definitely 
purist-algebraist. A distinction should be made also at the level of research 
interests: while in Dublin the interest turned towards Laplace, in 
Cambridge the algebraical calculus of Lagrange came in. 

Although the Cambridge reform of the teaching was almost a complete 
failure, the Analytical Society's advocacy of the Lagrangian calculus of 
operators and the calculus of functions spread all over Britain as a 
tradition for research. It is again unfortunate that many of the British opted 
for Lagrange's approach, for on the continent itself it was becoming a bit 
old fashioned, while a new school was gradually emerging with Cauchy's 
rigorization of the calculus. In following Lagrange, many British 
mathematicians rather isolated themselves from the continent. How this 
isolation brought new and unsuspected discoveries in the algebra of logic 
and other related fields would be the subject for another book. 
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A.I Table of contents of William Emerson's The Doctrine of Fluxions 
(I743) (2nd edn., I757) 

The Doctrine of Fluxions 
Postulatum 
Definitions 
Notation 
Axioms 

Preface 

Section I The Fundamental Principles and Operations of Fluxions 

Prop.1. The fluxion of any fIuent or generated quantity is equal to the 
sum of the fluxions of all the roots or sides, each multiply'd 
continually by the index of its power, and by the given fluent when 
divided by the said root or side 

Prop.II If two fIuents or variable quantities be equal to each other, or in 
a given ratio; their fluxions will be equal, or in the same given ratio. 
And if two flowing quantities be equal or in a given ratio, their 
contemporary fluents will be equal, or in the same given ratio 

Prop.I1I To find the fluxions of quantities Prop. IV-VIII several theorems 
for finding the fluents of quantities from other given fluents 

Prop.IX To transform fluxional quantities into others equal to them 
Prop. X To find the fluents of quantities by infinite series 
Prop.XI To find fIuents by the table 
Prop.xII To correct the fluent of a given fluxion 
Prop. XIII To investigate a problem by the method of fluxions 
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Section IT The investigation and solution of some of the most general 
and useful problems in the mathematics 

Prob.l To find the maxima and minima of quantities 
Prob.II To find the logarithms of numbers 
Prob.III To draw tangents to curves 
Prob.IV To find the points of contrary flexion of a curve 
Prob.V To find the radius of curvature of a curve 
Prob.VI To find the variation of curvature 
Prob.VII To find the nature of a curve. by whose evolution a given 

curve is described 
Prob. VIII To find the lengths of curve lines 
Prob.lX To transform spirals into geometrical curves. or geometrical 

curves into spirals of equal lengths 
Prob.x To find the quadrature of curves 
Prob.xI To find curves that are quadrable 
Prob.XII To find curves whose areas shall have any assigned relation to 

the area of a given curve 
Prob.xIII To find the surfaces of solids 
Prob.xIV To find the solidity of bodies 
Prob.xV To find catacaustick curves 
Prob.XVI To find diacaustick curves 
Prob.XVII To find the centre of gravity 
Prob.xVIII To find the centre of percussion and oscillation 
Prob.xIX To find the law of centripetal force for a given curve 
Prob.xX The nature of an arch being given. to find the height of the 

wall upon any part of it 
Prob.xXI The nature of a concave vault or cupole being given. to find 

the height of the wall in any point 
Prob.xXII To find the resistance of a body moving in a fluid 
Prob.XXIII [2nd edn.] To find the centre of gyration 
Prob.xXIV [2nd edn.] To find the strength of a piece of timber of any 

figure 

Section III The investigation of physical problems 

Prob.l To find the curve which a flexible line is put into by the force of 
the wind or any fluid 

Prob.l [2nd edn.] To find the fluxions of the times. velocities. and spaces 
described by bodies in motion; being acted upon by any accelerating 
force: a universal problem 

Prob.II To find the motion of a musical string 
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Prob.IlI To find the velocity of a projectile moving in a given curve 
Prob.IV To find the velocity of a body, falling towards the Earth, 

according to any law of gravity 
Prob. V To find the time of a body's descent towards the Earth according 

to any law of gravity 
Prob. VI From the velocity and direction of a projectile, and the law of 

centripetal force; to find the velocities, times, and angles of revolution 
Prob.VII To find the time of a pendulum's vibrating in the arch of a 

cycloid 
Prob. VIII To find the force wherewith a corpuscle is attracted towards 

the plane of a circle, ,according to any law of centripetal force 
Prob.IX To find the force wherewith an infinite solid attracts a corpuscle, 

when the law of attraction is inversely as some power of the distance 
greater than 1 

Prob.x To find the force wherewith a sphere attracts a corpuscle, when 
the force of every particle is reciprocally as the square of the distance 

Prob.XI To find the force wherewith a spheroid attracts a corpuscle 
placed at the pole 

Prob.x1I To find the motion of light passing through a refracting 
medium 

Prob.XIII To find the motion of a globe in a resisting medium 
Prob.xIV To find the motion of a globe ascending or descending in a 

resisting medium 
Prob.xV To find the motion of a globe oscillating in a cycloid in a 

resisting medium 
Prob.XVI To find the density of the atmosphere at any height, according 

to any law of gravity, supposing the density of the air as the 
compression 

Prob.XVII To find the density of the atmosphere at any height, 
according to any law of gravity, supposing the compression of the air 
to be as any power of the density 

Prob.XVIII To find the polar and equinoctial diameters of the Earth 
Prob.xIX [2nd edn.] To find the motion of a projectile in a resisting 

medium 
Prob.XX [2nd edn.] To find the time of ascent and descent of a fluid in 

the legs of a canal or crooked pipe 
Prob.XXI [2nd edn.] To find the weight of a ball falling a given height, 

which shall break a bar whose strength is given 
Prob.XXII [2nd edn.] To find the velocity of the motion propagated 

through a number of ivory balls, by the impulse of the first upon the 
second 

Prob.xXIII [2nd edn.] To find the velocity of sound 
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Prob.XXIV [2nd edn.] To find the velocity of the motion propagated 
along a stretched cord, by striking it 

Prob.XXV [2nd edn.] To find the height of the tides 
Prob.xXVI [2nd edn.] To find the precession of the equinoxes 
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Section III The use of fluxions in drawing tangents to curves 
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the evolutes of curves 
Section VI On the inverse method, or the manner of determining the 

fluents of given fluxions 
Section VII Of the use of fluxions in finding the areas of curves 
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solids 
Section X The use of fluxions in finding the superficies of solid bodies 
Section XI The use of fluxions in finding the centers of gravity, 

percussion and oscillation of bodies 
Section XII Of the use of fluxion in determining the motion of bodies 

affected by centripetal forces 

Part the second 

Section I The manner of investigating the fluxions of exponentials, with 
those of the sides and angles of spherical triangles 

Section II Of the resolution of fluxional equations, or the manner of 
finding the relation of the flowing quantities from that of the fluxions 

Section III Of the comparison of fluents, or the manner of finding one 
fluent from another 

Section IV Of the transformation of fluxions 
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quantities. according to the forms in Cotes's Harmonia mensurarum 

Section VI The manner of investigating fluents. when quantities. and 
their logarithms. arcs and their sines. &c. ar~ involved together: with 
other cases of the like nature 

Section VII Showing how fluents. found by means of infinite series. are 
made to converge 

Section VIII The use of fluxions in determining the motion of bodies in 
resisting mediums 

Section IX The use of fluxions in determining the attraction of bodies 
under different forms 

Section X Of the application of fluxions to the resolution of such kinds 
of problems de maximis et minimis. as depend upon a particular 
curve. whose nature is to be determined 

Section XI The resolution of problems of various kinds 
A table of hyperbolical logarithms 

A.3 Table of contents of John Rowe's An Introduction to the Doctrine 
of Fluxions (I7 5 I) 
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Of the principles of fluxions. and of the new notation in algebra 
Of finding the fluxion of a given fluent 
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Part II 
Of infinite series 
Of finding the fluent of a given fluxion 
Of finding the length of a curve line 
Of finding the areas of curvilinear spaces 
Of finding the convex superficies of solids 
Of finding the contents of solids 

Part III 

Miscellaneous questions. with their incremental and' fluxional solutions 
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XXVII The Method of Fluxions and Infinite Series, with its Application to the 
Geometry of Curve Lines, by the Inventor Sir Isaac Newton. Translated 
from the Author's original Latin. To which is Subjoined, a Perpetual 
Comment upon the whole Work, by J. Colson, F.R.S. 4to. 1736. Price 
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CHAIRS IN THE UNIVERSITIES 

C.I The Gregory's family tree 

John of Drumoak = Janet 

I 
David of Kinnairdie James I (1638-75) 

I 
I 

David I (1659-1708) James II (1666-1742?) Charles (1681-1754) 

I 
David II (d. 1763) 

The Gregorys (Gregories) have been perhaps the most influential family in 
the history of Scottish universities. From the family tree I filter, as 
computer theorists would say, only the professors of mathematics. Their 
careers can be traced in the following appendixes. On the Gregorys see 
Paul David Lawrence's Ph.D. thesis (1971). 

C.2 University of Cambridge 

Lucasian Chair of Mathematics 

1701 William Whiston lectures as substitute of Newton. 
1702 William Whiston appointed. 
1710 William Whiston banished for his Arian heresy. 
1711 Nicholas Saunderson appointed. 
1739 Death of Saunderson. 

John Colson appointed. 
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1760 Death of Colson 
Edward Waring appointed. 

1798 Death of Waring. 
Isaac Milner appointed. 

1820 Death of Milner. 
Robert Woodhouse appointed. 

1822 Robert Woodhouse moves to the Plum ian Chair (see below). 

Plumian Chair of Astronomy 

1707 Roger Cotes appointed. 
17 I 6 Death of Cotes. 

Robert Smith, Cotes's cousin, appointed. 
1760 Smith retires. 

Anthony Shepherd appointed. 
1796 Death of Anthony Shepherd. 

Samuel Vince appointed. 
1821 Death of Vince. 
1822 Robert Woodhouse appointed. 
1827 Death of Woodhouse. 

C.3 University of Oxford 

Savilian Chair of Astronomy 

1691 David I Gregory* appointed. 
1708 Death of Gregory. 
1709 John Caswell appointed. 
1712 Death of Caswell. 

John Keill appointed. 
172 I Death of Keill. 

James Bradley appointed. 
1762 Death of Bradley. 
1763 Thomas Hornsby appointed. 
1810 Death of Hornsby. 

Savilian Chair of Geometry 

1649 John Wallis appointed. 
1703 Death of Wallis. 

Edmond Halley appointed. 
• See the Gregory's family tree. p. 150. 

lSI 
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1742 Death of Halley. 
Nathaniel Bliss appointed. 

1764 Death of Bliss. 
I 765 Joseph Betts appointed. 
1766 Death of Betts. 

John Smith appointed. 
1796 John Smith resigns? 
1797 Abram Robertson appointed. 
1810 Abram Robertson resigns (moves to the Chair of·Astronomy) 

C.4 University of Edinburgh 

Chair of Mathematics 

1664 James I Gregory* appointed. 
1675 Death of James I Gregory. 
1675-83 Chair vacant (John Young, a student, teaches). 
1683 David I Gregory* appointed. 
1691 David I Gregory resigns (moves to the Chair of Astronomy in 

Oxford). 
1692 James II Gregory* appointed. 
1725 Colin Maclaurin appointed joint-Professor (George Campbell com­

petes). 
James Gregory retires from teaching. 

1742 ?Death of James II Gregory. 
1746 Death of Maclaurin. 
1747 Matthew Stewart appointed. 
1772 Matthew Stewart retires from teaching. 

Dougald Stewart, son of Matthew, teaches. 
1775 Dougald Stewart appointed joint-Professor. 
1785 Death of Matthew Stewart, Dougald Stewart appointed to the Chair 

of Moral Philosophy. 
Adam Ferguson appointed, John Playfair appointed joint-Professor. 

1805 John Playfair appointed to the Chair of Natural Philosophy, John 
Leslie appointed. 

C.5 University of Glasgow 

Chair of Mathematics 

1691 George Sinclair appointed. 
1699 Robert Sinclair appointed (teaching discontinued) . 

• See the Gregory's family tree. p. 150. 
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17 I 0 Robert Sinclair resigns. 
171 I Robert Simson appointed. 
1761 Robert Simson retires from teaching. 

153 

James Williamson appointed assistant and successor of Simson. 
1768 James Williamson appointed. 
1789 James Millar appointed assistant and successor of Williamson. 
1795 James Millar appointed. 
1832 Death of James Millar. 

C.6 University of St Andrews 

Chair of Mathematics 

1699 James I Gregory* appointed. 
1674 James I Gregory moves to the Chair of Mathematics in Edinburgh. 
1688 James 11* Gregory appointed. 
1691 James II Gregory moves to the Chair of Mathematics in Edinburgh. 
I 707 Charles Gregory* appointed. 
1739 Charles Gregory retires. 

David II Gregory* appointed. 
1763 Death of David II Gregory. 
1765 Nicolos Vilant appointed. 
1807 Nicolos Vilant retires. 

C.7 University of Aberdeen 

Marischal College, Chair of Mathematics 

1687 George Liddell appointed succeeding to his father Duncan. 
1706 George Liddell deposed. Thomas Bower, Professor of Mathematics at 

King's College, Aberdeen, competes for the Chair, but Liddell is 
reinstated. 

1715 Jacobite rebellion: the university is closed for two years. 
1716 George Liddell deposed for his Jacobite sympathies. 
1717 Colin Maclaurin appointed after competitive examination (Walter 

Bowman competes). Examiners: Charles Gregory, Professor of 
Mathematics at St Andrews and Alexander Burnet. regent at 
King's, Aberdeen. 

1721-4 Colin Maclaurin travels in England and France. 
1724 Daniel Gordon, a regent, teaches mathematics. 
1725 Colin Maclaurin returns: in November he is appointed conjunt 

Professor with James II Gregory in Edinburgh . 

• See the Gregory·s family tree. p. 150 . 



154 APPENDIX C 

1726 Colin Maclaurin deposed. 
1727 John Stewart appointed. Examined by Daniel Gordon, Charles 

Gregory and Alexander Burnet (see above). 
1753 Regenting abolished. 
1766 Death of John Stewart. 

William Trail(l) appointed after competitive examination (Robert 
Hamilton and John Playfair compete). 

1768 John Gray, rector, leaves £1000 for two mathematical bursaries. 
1775 Patrick Copland appointed to the Chair of Natural Philosophy. 
1776 John Garioch appointed Trail's assistant and successor. He dies six 

months later. 
1778/9 Patrick Copland teaches the higher branches of mathematics. 
1779 William Trail resigns. 

Patrick Copland appointed (but teaches natural philosophy). 
Robert Hamilton appointed to the Chair of Natural Philosophy (but 
teaches mathematics). 

1814 John Cruickshank teaches mathematics to the first and second 
class. 

1817 Patrick Copland and Robert Hamilton exchange Chairs. John 
Cruickshank appointed Hamilton's assistant and successor. 
Hamilton continues teaching to the higher class up to 1824. 

King's College, Chair of Mathematics 

At King's during the eighteenth century, mathematics was taught by the 
regents. A Chair of Mathematics founded in 1703 was occupied by 
Thomas Bower, who neglected his duties, and by Alexander Rait, who was 
appointed to the Chair . in order to gain him more respect from the 
students ... but without any salarie' (quoted in Ponting (I979b), p. 172). 

1703 Thomas Bower appointed Professor of Mathematics. His teaching 
discontinued. 

1715 Jacobite rebellion: the university is closed for two years. 
1717 Thomas Bower deposed. 
1717-32 Chair vacant. 
1732 Alexander Rait appointed Professor of Mathematics. 
1753 Reform of the curriculum, but regenting is not abolished. 
1800 Reform of regenting system. William Jack is appointed Professor of 

Mathematics. 
18 II William Jack resigns; he becomes Professor of Moral Philosophy. 



CHAIRS IN THE UNIVERSITIES 

C.S University of Dublin 

Chairs of Mathematics and Astronomy 

1762 Chair of Mathematics instituted. 
1764 Richard Murray appointed Professor of Mathematics. 
1774 Andrews Chair of Astronomy instituted. 
1783 Henry Ussher appointed Andrews Professor of Astronomy. 
1790 Death of Ussher. 

John Brinkley appointed Andrews Professor of Astronomy. 
I 79 I Observatory at Dunsink completed. 
1792 John Brinkley appointed Astronomer Royal of Ireland. 
1795 Richard Murray retires from teaching. 
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1796 Bishop John Law institutes a prize to encourage the study of 
mathematics. 

1799 Death of Murray. 
1800 William Magee appointed Professor of Mathematics. 
18 I 2 Magee resigns. 
18n Bartholomew Lloyd appointed Professor of Mathematics. 
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MILITAR Y ACADEMIES 

D.I Royal Military Academy at Woolwich (masters and assistants of 
mathematics and fortiOcation) 

1741 John Muller, Chief Master (Benjamin Robins competes). 
Derham, assistant to Chief Master. 

1743 Death of Derham. 
Thomas Simpson, assistant to Chief Master. 

1761 Death of Simpson. 
John Lodge Cowley, Assistant to Chief Master. 

1764 William Green, master for classics, writings and arithmetic. 
1766 Muller retires. 

Allan Pollock, Professor of Artillery and Fortification. 
1773 Cowley retires. 

Charles Hutton, Professor of Mathematics (examined by Landen, 
Maskelyne, Horsley). 

1777 Pollock retires. 
Isaac Landmann, Professor of Artillery and Fortification. 

1782 John Bonnycastle, mathematical master. 
1789 Rouviere, assistant to Professor of Artillery and Fortification. 
1792 Death of Rouviere. 

C. Blumenheben, assistant to Professor of Artillery and Fortification. 
1799 Green retires. 

Louis Evans, mathematical master. 
1802 Thomas Evans, first mathematical assistant. 
1803 Olynthus Gregory, second mathematical assistant. 
1806 Charles Martemont de Malorti, assistant to Professor of Artillery 

and Fortification. 
Samuel Christie, third mathematical assistant. 
Thomas Myers, fourth mathematical assistant. 
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Peter Barlow, fifth mathematical assistant. 
William Moore, sixth mathematical assistant. 

1807 Hutton retires. 
John Bonnycastle, Professor of Mathematics. 
William Saint, seventh mathematical assistant. 

1816 Landmann retires. 
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Charles Martemont de Malorti, Professor of Artillery and For­
tification. 
Blumenheben retires. 
David Robinson, assistant to the Professor of Artillery and 
Fortification. 

1817 John Ritso, second assistant to Professor of Artillery and For­
tification. 

1821 Death of Bonnycastle. 
Olynthus Gregory, Professor of Mathematics. 

1838 Gregory retires. 

D.2 Royal Military College (Sandhurst) (masters aQd professors of 
mathematics) 

1799 Formation of the Senior Department. 
Isaac Dalby appointed mathematical master. 

1800 The staff consists of seven professors. 
1802 Formation of the Junior Department. Sixteen cadets enroll. 

Thomas Leybourn appointed mathematical master. 
1803 Royal Warrant to extend the number of cadets to 400. 

William Wallace appointed mathematical master. 
1804 James Ivory appointed mathematical master. 
1819 Ivory and Wallace resign (Wallace moves to the Chair of 

Mathematics in Edinburgh). 
1839 Leybourn retires as senior Professor of M.athematics. 

Other mathematicians belonging to the staff 

Henry Clarke (1743-1818) retired in 1815. 

James CUnliffe} 
Mark Noble contributors to Leybourn (1806-35). 
John Wallace 
John Lowry (1796-1847) retired in 1840. 
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D.3 Royal Naval Academy at Portsmouth (head-masters) 

1733 Foundation of the Academy. 
1735? Thomas Haselden appointed. 
1740? Death of Thomas Haselden. 

Robert Waddington appointed. 
1755? Robert Waddington retires. 
1755 John Robertson, former mathematical master at Christ's Hospital, 

London, appointed. 
1766 John Robertson retires; he becomes clerk and librarian of the Royal 

Society. 
1767 George Witchell appointed. 
1771 John Bradley teaches mathematics as second mathematical master 

or 'mathematical usher'. 
1785 Death of George Witchell. 

William Bayley appointed. 
1806 William Bayley retires. 
1806/7 A reform takes place: the Academy becomes the Royal Naval 

College. James Inman appointed. 
1829 Commissioned officers admitted in the College on half-pay. 
1837 The College closed. James Inman retires. 
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SUBJECT INDEX OF PRIMARY LITERATURE 

Algebra 

Hales (1784) 
Harris, John (1702) 
Maclaurin (I784b) 
Moivre (1708), (I724a) 
Playfair (I 779) 
Saunderson (1740), (I756b) 
Sewell (1796) 
Taylor, Brook (I720a) 
Trail (1796) 
Waring (1762), (1764), (1766), 
(1770), (1772), (I779b) 

Applications (engineering, 
gunnery, ship-building, 

fortiOcations, sound, geography, 
Ouids, bridges, strength of 

materials, magnetism, navigation, 
geography) 

Atwood (1794), (1796), (1798), 
(1801) 
Barlow (1817), (1820) 
Blake (1753), (1760) 
Chapman (1820) 
Euler (I 776) 
Glenie (I 776) 
Hales (1778) 

Hawney (1717) 
Hutton (1772), (I779a), (I 779b), 
(1780), (1790), (1821) 
Jurin (I744a), (I744b) 
Muller (1746), (1747), (1755), 
(1757) 
Perks (1717) 
Playfair (I 788b) 
Robertson, John (1754) 
Robins (I742), (1744) 
Salmon (1749) 
Young (1784) 

Astronomy 

Brinkley (I802a), (I803a), 
(1813), (I820a), (I820C), (1825) 
Dawson (1769) 
Emerson (I769b) 
Gregory, David (1702) 
Gregory, Olynthus (1802) 
Hales (1782) 
Harris, Joseph (173 I) 
Hellins (1798b), (1800) 
Horsley (1768), (1770) 
Ivory (1805), (1814), (1823) 
Keill (1714), (1718) 
Landen (I77Ib) 
Laplace (1814) 
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Lax (1799) 
Machin (1726), (1729), (1741) 
Maclaurin (I754a), (I754b) 
Milner (1780) 
Murdoch (1753), (1769) 
Newton, Isaac (1687), (1702) 
Pemberton (1772) 
Robertson, Abram (1807) 
Silvabelle (1755) 
Simpson (I756b), (1757), (1758) 
Smeaton (1769) 
Stewart (1756), (1761), (I763b) 
Vince (1787), (1790), (1797, 
1799, 1808) 
Walmesley (1754), (1757), 
(1759), (1762 ) 
Whiston (1707) 
Woodhouse (1812), (1818), 
(1821) 

Calculus 

Barrow (1735) 
Craig(e) (1706) 
Ditton (17°4) 
Maclaurin (1742), (I744b), 
(I744C) 
Moivre (I698a), (1730) 
Newton, Isaac (1687), (I704c), 
(17 I1b), (1717), (173 6), (1737), 
(1745) 
Pemberton (1724) 
Simpson (I 740) 
Stirling (I 717) 
Taylor, Brook (1715), (I720b), 
(172 0 C) 

Waring (1776) 
Woodhouse (I80Ib) 

Elementary mathematics 

Dalby (1806) 
Fenn (1769, 1772) 
Gregory, David (1745) 
Hamilton, Robert (1800) 
Hodgson (1723) 
Holliday (1745) 
Hutton (1798, 1801) 
Inman (1810, 1812) 
Martin (1736), (1739) 
Muller (1748) 
Simpson (1752) 
Ward (17°7) 
West (1761) 

Finite differences 

Emerson (1763), (1767) 
Gompertz (1806) 
Moivre (1730) 
Newton, Isaac (1687), (17I1c) 
Stirling (1720), (1730) 
Taylor, Brook (1715) 

Foundations of calculus 

anonymous (I803a) 
Bayes (1736) 
Berkeley (1734), (I735a ), 
(I735b) 
Blake (1741) 
Carnot (1800, 1801) 
Cheyne (1715) 
Collins (1713) 
Glenie (1778), (1789), (1793), 
(1798) 
Hales (1800) 
Hanna (1736) 
Heath (1752) 
Horsley (I779a), (I779b) 
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Jurin (1734), (1735) 
Kirkby (1748) 
Landen (1758), (1764) 
Ludlam (I 770) 
Maclaurin (1742) 
Moivre (I704b) 
Newton, Isaac (1687), (I704c), 
(17 15) 
Newton, Thomas (1805) 
Paman (1745) 
Petvin (1750) 
Playfair (I822b) 
Raphson (1715) 
Robartes (I 712) 
Robins (1735) 
Simson (1776) 
Smith, James (1737) 
Toplis (1805) 
Walton (I735a), (I735b) 
Woodhouse (1799), (1800) 

Geometry 

Ditton (1704) 
Euclid (1756) 
Hamilton, Hugh (1758) 
Maclaurin (I720a), (I720b), 
(1720C) 
Murdoch (1746) 
Newton, Isaac (1687), (I704b) 
Playfair (1795) 
Simpson (176o) 
Simpson (1724), (1776) 
Stewart (1746), (1754), (I763a) 
Stirling (1717) 
Stone (1744) 
Wallace (1798) 
Waring (1765) 

Integration 

anonymous (1724) 
anonymous (I803b) 
Brinkley (I802b), (I803b), 
(I820b) 
Bromhead (1816) 
Cheyne (1703), (1705) 
Cotes (1717), (1722) 
Craig(e) (1685), (I688a), 
(I688b), (1693), (1695), (I698a), 
(I698b), (1699), (1704), (1710), 
(1718) 
Hellins (1802), (I81I) 
Ivory (1798) 
Klingenstierna (1733) 
Knight (I8I2b) 
Landen (1769), (I77Ia), (1772), 
(1775), (178o, 1789) 
Landerbeck (1784) 
Maclaurin (1742) 
Moivre (I704a), (1717) 
Newton, Isaac (I704C), (1736), 
(1745) 
Perks (1708) 
Robins (1728) 
Simpson (I750b) 
Vince (1786) 
Wallace (1805) 
Walmesley (I749b) 
Woodhouse (1804) 

Isoperimetrical problems, 
extremals, calculus of variations 

Craig(e) (1702) 
Patio (1699), (1714) 
Gregory, David (I698a), (I698b), 
(1700) 
Machin (1720) 
Newton, Isaac (1698) 
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Playfair (1812) 
Sault (1699) 
Simpson (1756a), (1759a) 
Woodhouse (1810) 

Mathematical dictionaries, 
collections 

Bailey et al. (1736) 
Barlow (1814a) 
Clark et aI. (1764, 1765, 1766) 
Dodson (1748, 1753, 1755) 
Harris, John (1704, 17 10) 
Hellins (1788) 
Holliday (1745-53) 
Hutton (1775a), (1775b), (1796, 
1795) 
Jones (I 706 ) 
Leybourn (1795-1804), 
(1806-35), (1817) 
Maseres (1791-18°7) 
Raphson (I 702) 
Stone (1726) 
Walter (1762?) 

Mathematical tables 

Barlow (1814b) 
Inman (1829) 
Knight (1817a) 

Mechanics 

Atwood (1784) 
Ditton (1705) 
Emerson (1754), (1769a) 
Gregory, Olynthus (1806) 
Keill (1710), (171 7b) 
Knight (18I2a) 
Landen (1777), (1780,1789), 
(1785) 

Maclaurin (1724) 
Newton, Isaac (1687) 
Parkinson (I 785 ) 
Robinson (1820) 
Simpson (1750a), (1757) 
Taylor, Brook (1714a), (1714b), 
(1715), (1723) 
Venturoli (1822), (1823) 
Vince (1781) 
Waring (1788), (1789b) 
Whewell (1819), (1823) 
Wildbore (I 79 I) 
Wood (1796) 

Methods of operators, Lagrangian 
methods 

Babbage (1815), (1816), (1817a), 
(1817b), (1822), (1823) 
Babbage and Herschel (1813) 
Bonnycastle (1810), (1813) 
Brinkley (1807) 
Bromhead (1816) 
De Morgan (1836) 
Herschel (1814), (1816), (1818), 
(1822) 
Knight (18II), (1816), (1817b), 
(1817c) 
L'Huilier (1796) 
Spence (1809), (1814), (1820) 
Woodhouse (1801a), (1802), 
(1803) 

Natural philosophy 

Atwood (I 776) 
Cotes (1738) 
Ditton (1705) 
Hamilton, Hugh (1774) 
Haiiy (1807) 
Helsham (1739) 
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Keill (1702), (1717a), (1720) 
Maclaurin (I748a) 
Newton, Isaac (1687) 
Pemberton (1728) 
Playfair (1812-14) 
Robison (1804) 
Rowning (1744, 1745) 
Rutherforth (1748) 
Whiston (1710) 
Worster (1722) 
Young (1800) 

Optics 

Smith, Robert (1738) 
Stack (1793) 

Perspective 

Cowley (1765) 
Kirby (1754) 

Probability 

Moivre (1712), (1718) 
Simpson (I756b) 

Series 

Babbage (1819) 
Bayes (1764) 
Brinkley (1800C) 
Craig(e) (1712) 
Emerson (1767) 
Hellins (1781), (1794), (1796), 
(I798a), (I798b), (1800) 
Hutton (1777), (1781) 
Jones (1772) 
Landen (I755b), (1761), (178o, 
1789), (1781 ), (1783), (1784) 
Maclaurin (1742) 

Maseres (1777), (1779) 
Moivre (I698b), (1699), (I724a), 
(1730) 
Montmort (1720) 
Newton, Isaac (17IIb) 
Raphson (1697) 
Robertson, Abram (1795), (1806) 
Simpson (1740), (1743), (1753), 
(I759b) 
Stirling (1730) 
Vince (1783), (1785) 
Waring (I779a), (1784), (1786), 
(1787), (I789a), (179 1) 

Shape of the Earth 

Clairaut (I74Ia), (I74Ib), (1754) 
Desaguliers (I726a), (I726b) 
Ivory (1809), (I812a), (I812b), 
(1822) 
Maclaurin (1741), (1742), 
(I744a) 
Maupertuis (1733) 
Newton, Isaac (1687) 
Playfair (18o 5) 
Short (1754) 
Simpson (1743) 
Stirling (1738) 

Textbooks on calculus 

Agnesi (1801) 
anonymous (1810) 
Babbage, Herschel and Peacock 
(1820) 
Cheyne (17°3) 
Colden (17 5 I) 
Dealtry (18 10 ) 
Ditton (1706) 
Emerson (1743) 
Harris, John (17°2) 
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Hayes (1704) 
Hodgson (1736) 
Holliday (I 777) 
Hutton (1798. 1801) 
Jones (1706) 
Lacroix (1816) 
Lardner (1825) 
Lyons (1758) 
Maclaurin (1742) 
Martin (1736). (1739). (1759). 
(1773) 
Muller (1736) 
Rowe (1751) 
Rowning (1756) 
Saunderson (I7s6a) 
Simpson (1737). (1750c). (1752) 
Stone (1730) 

Vince (1795) 
Wallace (1810). (1815) 
Ward (1707) 

Trigonometry 

anonymous (1724) 
Brinkley (I800a). (I800b) 
Cotes (1717) 
Herschel (1813) 
Landen (I7ssa) 
Lyons (1775) 
Martin (1773) 
Moivre (I 724b). (1730). (1741) 
Pemberton (1722) 
Woodhouse (1809) 
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MANUSCRIPT SOURCES 

Cambridge University Library 

MS Add 6312: Nicholas Saunderson's lectures on tides, capillary tubes, 
barometer, vapours, rain, hail, snow, figure of the Earth, thunder and 
lightening, winds, circulation of sap, rainbow, heat and cold, sound, 
chronology, astronomy, the horizontal Moon (dated 1737). 

MS Add 2977: Nicholas Saunderson's lectures on hydrostatics, sound, 
optics, mechanics, astronomy, the tides, chronology, the horizontal Moon, 
heat and cold. 

MS Add 589: Nicholas Saunderson's lectures on hydrostatics, sound, 
optics, mechanics, astronomy, the tides, chronology (dated 172 7-9). 

MS Add 3444: first part of Nicholas Saunderson's Method of Fluxions 
(dated 1738). 

Gonville and Caius College Library (Cambridge) 

MS Add 723/749: John Micklebourgh's mathematical exercise book 
(1720S). 

Watson Library (University College, London) 

MSS Graves 3-5: James Bradley's sketch of Oxford lectures 

MS Add 243: Nicholas Saunderson's lectures on hydrostatics, the tides, 
sound, optics, mechanics, astronomy, the rainbow, chronology (dated 
1730 ). 
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MS Graves 23 (2): letters to John Nourse from authors Uohn Stewart, John 
Colson, John Robertson, John Landen, William Emerson, Hugh Hamilton, 
Francis Holliday, Robert Heath, Robert Thorp, Nevil Maskelyne). 

Bodleian Library (Oxford) 

MS Rigaud 3-4: Nicholas Saunderson's lectures. 

MS Radcliffe Trust: Thomas Hornsby Oxford lectures. 

Royal Society Library (London) 

MS LBC.16,412,426,4S6: Robert Simson's letters. 

British Library (London) 

MS Add Eg.8 34: Nicholas Saunderson's lectures. 

MS Royal 487 .b. 1 7 : first part of Nicholas Saunderson's Method of Fluxions. 



NOTES 

Introduction 

1 This label for eighteenth-century calculus is in Boyer (1959). p. 224. 
2 Charles Babbage in his (1864) recollects that he and his young fellows of the Analytical 

Society of Cambridge had in mind to entitle the first volume of their Memoirs The 
Principles of Pure d-ism Against the Dot-Age of the University. The volume appeared in 1813 
with the more austere title Memoirs of the Analytical Society. This pun on the word' dot' 
is widely known in the narrow circle of historians of mathematics. 

3 On the introduction of Lagrangian ideas in early nineteenth-century England. see 
Koppelman (1971) and Enros (1981). 

4 This was the title of a popular treatise by Benjamin Martin. 
5 For example. Maclaurin (1742) was translated into French in 1749 and (partly) in 1765. 

Stone (1730) is a translation ofL'Hospital's Analyse des lnfinimenl Petits (1696). and in 
1801 there appeared an English translation of Agnesi's lstituzioni Analitiche. 

Overture 

I See Newton (1967-81). II. pp. 206-47. The first edition of'De analysi' is in Newton 
(17 IIa). 

2 See Newton (1967-81). III. pp. ]2-]28. Newton (1736) is an English translation 
prepared by John Colson. 

3 For an analysis of Newton's techniques of integration see Scriba (1964). pp. 12,5-6. See 
also Di Sieno and Galuzzi (1987). 

4 See Newton (1967-81), III. pp. 102-4. 
5 On the concepts of the differential calculus see Bos (1974). 
6 According to Kitcher (1973) moments. fiuxions and limits play different roles in 

Newton's mathematics. The fiuxional method allowed him to reduce a diversified class of 
problems to two basic problems: findiAg tangents and finding areas. Moments were used 
to abbreviate calculations. while the rigorous proofs were framed in terms of the theory 
of limits. Kitcher concludes: 

Once we have unearthed the problems. Newton's solutions seem more impressive than 
his eighteenth-century critics took them to be. (Kitcher (1973), p. 49) 

Chapter I 

I I summarize here the main events of this famous quarrel. As is well known. in 1676 
Oldenburg promoted an exchange of letters between Newton and Leibniz. Newton 
disclosed part of his secrets, especially his progress on series. in two letters. known later 
as epistola prior and epistola posterior. which were first published by John Wallis (1699) 
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in the epistolarum collectio included in the third volume of his mathematical works. By 
then Leibniz had already independently 'invented· the differential calculus. Leibniz's 
'new method' appeared in (1684). while Newton's calculus was rendered public only in 
'De quadratura' (1704C). Leibniz reviewed anonymously the' De quadratura' in the Acta 
Eruditorum for January 1705. He subtly affirmed that Newton had only modified details 
of Leibniz's calculus. To be fair we must say that Leibniz had already been attacked by 
the Newtonian Fatio in (1699): so his 1705 review can be seen as a self defence. But the 
situation precipitated when another Newtonian. John Keill, in (1710) bluntly accused 
Leibniz of plagiarism. Leibniz's next move was to ask for a public apology from the Royal 
SOciety. A committee. completely under Newton's infiuence. was immediately formed 
and, early in 1713. appeared the result: the Commercium Episolicum, a collection ofletters 
and mathematical writings which' proved' Leibniz's plagiarism. Leibniz's reply was to 
circulate a charta volans. a 'fiy-sheet'. which included a Judicium by an 'eminent 
mathematician'. Johann Bernoulli. who maintained that Newton could not understand 
second order differentials. Newton counter-attacked with the 'Account' to the 
Commercium Episolicum, published in 1715. Leibniz's death in 1716 did not calm 
Newton's anger: in 1717 and 1722 there appeared Newton's revised and augmented 
editions of Raphson's History of Fluxions (1715) (in which Newton added two letters by 
Leibniz to Conti of 1716. his response to the former and comments upon the latter) and 
of the Royal Society's Commercium Epistolicum (in which Newton added the 'Ad 
Lectorem·. a latin translation of his 'Account' (1715), the offending 1713 Judicium 
together with Newton's annotations). It is now accepted that Newton is the 'first 
inventor'. but it is certain that Leibniz worked independently on his differential and 
integral calculus. 

2 On David Gregory see Eagles (1977a) and (1977b) . 
.3 These pages were communicated in 1692 to Wallis by Newton. They are reproduced in 

Newton (1967-81). VII, pp. 170-80. 
4 Gregory's copy of Newton's 'De methodis' is in Newton (1967-81), III, pp. 354-72. 
5 Some of these papers relate to the challenges between the British and the continentals. 

As is well known the Newton-Leibniz controversy provoked a great rivalry between the 
two mathematical communities. A first challenge was proposed by Johann Bernoulli. In 
the summer of 1696 he proposed to Leibniz. Varignon, L·Hospital. and others. the famous 
'brachistocrone' problem: i.e. to find. given two points A and B in a gravitational field. 
the path which minimizes the time of fall ofa point mass. In September 1696 this problem 
reached Wallis in Oxford. Wallis after three months passed it to his colleague David 
Gregory. who could not solve it. At last. in January of the next year. Bernoulli's challenge 
reached Newton who could. in a few hours, understand that the brachistocrone is a 
cycloid. Newton's solution appeared anonymously as [Newton) (1698). In Fatio (1699) 
there was an original approach to the problem: Fatio's solution was later perfected by 
Newton. Craig(e) (1702) presented' his own' analytical solution in differential notation. 
Machin (1720) tried unsuccessfully to extend the study of the brachistocrone in a central 
gravitational field: his mistakes are analysed in Newton (1967-81). VIII, p. 13n. Craig(e) 
kept on using the differential notation: only in (1712) and (1718) he employed Newton's 
dots. David Gregory (1698a) gave another solution of the brachistocrone. probably 
achieved only with Newton's assistance. Another paper on the brachistocrone is Sault 
(1699). Another challenge was raised in 1716. when the controversy between 
Newtonians and Leibnizians was at its climax. It was poorly treated in the anonymous 
[Newton) (1717). The challenge consisted in the following problem: to find the orthogonal 
trajectories to a given family of curves defined asfix.y,a) = o. where a is a parameter. and 
x and yare the coordinates which vary on a curve of the family when a is constant. In 
January 1716 Leibniz posed the problem to the British mathematicians in a letter to 
Conti. The general problem was exemplified in Leibniz's letter by a family of hyperbolas 
of varying latus rectum. The Newtonians John Keill and the young James Stirling in 
Oxford. and de Moivre. John Machin. Henry Pemberton. Brook Taylor in London did not 
understand the generality of the problem and found the orthogonals to the family of 
hyperbolas. Keill's solution is in Newton (1959-77). VI. pp. 282-3: Machin's is in Rigaud 
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(1841). I. pp. 268-9: Stirling's is in the Appendix of his book (1717): Pemberton's has 
been found in manuscript by D. T. Whiteside in the University Library of Cambridge (see 
Newton (1967-81). VIII. p. 63n): while. as far as we know. de Moivre's and Taylor's 
solutions have not survived. In the early Spring of 1716 Leibniz posed in a letter to Conti 
a new problem on the orthogonal trajectories to an arbitrary family of curves defined by 
a parametric differential condition. The only British solution was Taylor (I 720b). elegant 
but derived from Hermann. It is interesting to note that the Newtonians failed to answer 
the 1716 challenge: a problem which involved the use of partial derivatives. In fact in 
this context one has to deal both with Of/ox and with Of/va. As we will see later. the 
Newtonians failed to understand the importance of the calculus of partial derivatives 
developed by the continentals. On this topic see Engelsman (1984). For further 
information on the challenges between the Newtonians and the Leibnizians see 
Whiteside's notes in Newton (1967-81). VIII. and Hall (1980). 

6 'Niewentiit' is the Dutch theologian Bernhardt Nieuwentijdt. who wrote several 
works in criticism of the differential calculus. L. Carre is the author of Methode pour la 
Mesure des Surfaces. la Dimension des Solides ... par /' Application du Ca/cul Integral 
(1700). 

7 For example. we are told in Trail (1812). p. 2n. that Robert Simson studied Jones (1706) 
in Glasgow. 

8 The 'iatro-mechanists' tried to extend Newton's mathematical laws to the study of 
medicine. 

9 Cheyne replied in (1705) and then. with the exception of a philosophical treatment of the 
infinite in his (1715). abandoned mathematics. On the Cheyne affair see Whiteside's 
reconstruction in Newton (1967-81). VIII. pp. 15-21. 

10 It is interesting to note that Hayes. as Harris (1702). 2nd edn. refers the reader to 
continental mathematicians. In the Preface Hayes lists Wallis. Barrow. Newton. Leibniz. 
L·Hospital. 'The Bernoullis·. Craige. Cheyne. James Gregory. Tschirnaus. de Moivre. 
Fatio de Duillier. Varignon. Nieuwentijdt. Carre. 

II The Mathematical School at Christ's Hospital was established in 1673. The discipline in 
the School was notoriously a disaster. An attempt of reform took place in 1694: John 
Wallis. David Gregory and Isaac Newton were consulted. However. the School never 
fulfilled the desiderata of the founders. most notably amongst whom was Samuel Pepys. 
The problems at Christ's Hospital were caused by the Masters. Edward Paget and Samuel 
Newton. rather than by the pupils. In 1709 James Hodgson (1672-1755) was 
appointed; we will encounter him in chapter 4 as a writer on fiuxions. I believe that he 
retired from teaching in 1748. His successor. John Robertson (1712-76). was a 
mathematical writer: he became in 1755 first master at the Royal Naval Academy at 
Portsmouth: see his Elements of Navigation (1754). In 1755 he was succeeded by James 
Dodson (1709-57). Augustus De Morgan's ancestor: among his works we should at least 
remember The Mathematical Repository (Dodson. 1748. 1753. 1755). almost a bible for 
the . philomaths '. After Dodson we can identify two other masters: Daniel Harris. who 
was at Christ from the 1750S to the I 77os. and William Wales (1734-98). who was 
appointed in 1775. The New Mathematical School. where Humphry Ditton was master 
from 1706 to 1715. lasted only his lifetime. 

IZ, Stone was a prolific scientific writer. In addition to the works already mentioned. he 
revised the second edition of the English translation of David Gregory (1702). His 
translation of Barrow's Lectiones Geometricae appeared as Barrow (1735). Among his 
other works we mention his translation of Nicolas Bion's treatise on mathematical 
instruments and L'Hospital's treatise on conic sections. 

13 In the section devoted to 'Astronomy' Hayes mixed propositions taken from Newton's 
Principia with propositions taken from Leibniz's Tentamen de Motuum Coelestium Causis. 
See Hayes (1704). pp. 291-305. 

14 In October 1700 Dr Charlett. Master of University College. Oxford. sent to Pepys a 
'Scheme' of Gregory's course of lectures on the 'Elements of Mathematical Science' 
intended for classes of ten or fifteen 'scholars'. It seems that in the universities. both of 
Scotland and England. courses were given not only to the young students. but also to 
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adults interested in science. Gregory's . Scheme'. which can be found in Howson (1982). 
pp. 42-3. included only Euclid's Elements. trigonometry and algebra as a mathematical 
background for a discussion on optics. astronomy and mechanics. 

15 MSS Graves 3-5 (University College Library. London) provide just an outline of the 
lectures which Bradley had in mind to give. It is interesting however to see the texts 
which Bradley was using. Thomas Hornsby continued in the second half of the century 
to lecture in the Ashmolean Museum. He left about 2500 manuscript pages of lectures 
which are kept in the Bodleian Library (Oxford) as MS Radcliffe Trust. The historian of 
mathematics will find very little in these manuscripts. 

16 The Savilian Chair of Geometry after Edmond Halley passed to Nathaniel Bliss 
(I 700?-64) who taught some elementary mathematics (see Turner (1986). pp. 677-8). 
He was succeeded by Joseph Betts and John Smith. the latter being an anatomist and 
chemist rather than a mathematician. Abram Robertson. the next to occupy the Chair 
of Geometry. wrote a treatise on conic sections and some papers on the binomial theorem 
(1795.1806) and astronomy (1807). 

17 On Whiston see Force (1985). 
18 Waterland's and Greene's plans of courses are reproduced in Wordsworth (1877). 
19 Smith patronized the study of mathematics in various ways. In his will he left to the 

University of Cambridge £3500. part of which served to support the Smith prize (see 
. Smith Robert' in Dictionary of National Biography). 

20 Cambridge University Library (Cambridge) Add MSS 6312. 2977. 589: Bodleian Library 
(Oxford) MS Rigaud 3-4: University College (London) MS Add 243: British Library 
(London) MS Add Eg.834. 

21 The manuscript of the first part is in Cambridge University Library (Cambridge) MS Add 
3444 and British Library (London) MS Royal 487.b.17. 

22 See chapter 2 and. for further details. Gowing (1983). 
23 For a rare record of the teaching of fiuxions in Cambridge in the 1720S see 'John 

Micklebourgh's Mathematical Exercise-Book'. Gonville and Caius College Library 
(Cambridge). MS Add 723/749. 

24 John Robison. who had been a pupil of Simson. states that Simson gave lectures on . the 
elements of the fiuxionary calculus' (Encyclopaedia Britannica. 3rd edn .. XVII. pp. 504-9). 

25 Royal Society MS LBC.16.412.426.456. 
26 It seems that Maclaurin took his teaching duties in Edinburgh very seriously. In his 

correspondence he describes himself as being occupied six hours a day teaching to more 
than one-hundred pupils. See Maclaurin (1982). pp. 26. 32. 148. 

27 The Scots Magazine. Containing a General View of the Religion. Politicks. Entertainment. &c. 
ill Great Britain: And a succint Account of Pub lick Affairs Foreign and Domestick. For the Year 
MDCCXLI. III. by Sands. Brymer. Murray. Cochran, 1741. p. 372. 

28 St Andrews and Aberdeen do not compare with Glasgow and Edinburgh in this early 
period. In St Andrews the Gregorys dominated the Chair of Mathematics from 1688 to 
1763. But we do not know very much about the teaching of Charles and David II 
Gregory. In King's College, Aberdeen. a Chair of Mathematics was established at the 
beginning of the century. but it was not occupied. In Marischal College, Aberdeen. Colin 
Maclaurin held the Chair of Mathematics from 1717 to 1725. but he did not teach. In 
1727 he was succeeded by John Stewart who translated Newton (I 704C) and (I 7IIb) 
into English as Newton (1745). 

Chapter 2 

I On Cotes see Gowing (1983). This work contains a detailed commentary and a 
translation of Cotes's 'Logometria' (1717). See also anonymous (1724). a review. 
possibly by Robert Smith. of Cotes's Harmonia Mensurarum (1722). 

2 Cotes's Hydrostatical and Pneumatical Lectures (1738) were published posthumously and 
became a standard textbook, still in use in Cambridge in the second half of the eighteenth 
century. 

3 All these results have been analysed in detail in Gowing (1983). 
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4 These eighteen 'forms' are reproduced in Gowing (1983), pp. 192-4. 
5 Cotes's factorization theorem was enunciated without proof by Robert Smith as follows: 

Si quaerantur Factores Binomii aA ± xA
• Indice ,\ existente quolibet integro: dividatur 

circuli circumferentia ABCD cujus centrum O. in totidem partes aequales AB. BC, CD. DE. 
EF. &c; quot sint unitates in 2'\; & ab omnibus divisionibus ad punctum quodvis P in OA 
radio si opus producto situm, ducantur rectae AP, BP. CP. DP. EP. FP, &c; deinde positis 
OA = a OP = x, contentum sub omnibus AP. CP, EP, &c. sumptis a divisionibus alternis 
per integrum circuitum. adaequabit aA - xA vel xA 

- aA
• prout P fuerit intra vel extra 

circulum: & contentum sub reliquis BP. DP. FP. &c. in locis reliqui alternis adaequabit 
aA+xA

• (Cotes (1722). pp. 113-14) 

A proof was given in Pemberton (1722). Moivre (1730) and Brinkley (1800b). 
6 This is form XLVI. See Cotes (1722), p. 187. Smith is also the author of the 'Editoris 

Notae'. placed at the end of Harmonia Mensurarum (1722). pp. 93-125. in which he 
employs Cotes's integrals to solve some problems of the 'Logometria' (1717). 

7 For a detailed analysis of de Moivre's life and work see Schneider (1968). 
8 Taylor (1715) has been analysed in detail in Feigenbaum (1985). 
9 Another example ofthe fiexibility ofNewton's notation is given in Brinkley (1807) where 

some theorems of the Lagrangian calculus of operations (quite obviously an approach of 
which Taylor was not aware) are expressed in dotted notation. See chapter 9. section 9.4. 

10 The original Latin reads as 

Sint z & x quantitates duae variabiles, quarum z uniformiter augetur per data incrementa 
? & sit n? = v. v-? = v. V-? = v. & sic porro. Tum dico quod quo tempore z crescendo 
fit z + V. x item crescendo fiet 

\ \\\ 
V vv vvv 

x+x-+x---+x + .... 
. I'? .. I . 2·?2 'I' 2' 3 .?3 

I I The original Latin reads as 
Si pro Incrementis evanescentibus scribantur fiuxiones ipsis proportionales. factis jam 
omnibus ~. v. v, v, v. &c. aequalibus quo tempore z uniformiter fiuendo fit z + v fiet x. 

\ II 

. v .. v' , v3 

x+x-+x---+x + .... 
I' i I' 2' i2 I' 2' 3' i 3 

12 Tweedie does not accept this interpretation; see Tweedie (1922), p. 8. According to Peter 
J. Wallis. in 1717 Stirling might have held a teaching appointment in Edinburgh: see 
'Stirling, James' in Dictionary of Scientific Biography. 

13 A letter by Stirling to Newton is dated Venice 17 August 1719. See Newton (1959-77). 
VII. pp. 53-4. 

14 For Watts' Academy (known up to 1721 as 'Accomptanfs Office') see Hans (1951), 
pp. 82-7. Stirling. together with W. Watts. W. Vream and P. Brown. wrote a textbook 
on mechanics and natural philosophy to be used in the Academy. Another textbook is 
Worster (1722). A study of Stirling's life could tell us something about the quasi­
professionalization of mathematics in the first half of the eighteenth century. It seems that 
in Venice he was involved in an obscure affair in the glass industry; then we find him in 
London as a teacher of mathematics and adviser to Lord .Bolingbroke on financial 
calculations. and in Scotland as an administrator of the lead mines. a surveyor and, 
perhaps, a teacher of book-keeping, navigation. practical mathematics, georgraphy and 
French. Furthermore. Stirling's biography is remarkable because it shows that amongst 
British mathematicians he was the one who had most contacts with the continent. On 
Stirling see Tweedie (1922). This work includes a biography of Stirling. a commentary 
on Stirling (1717) and Stirling (1730) and part of his correspondence with Colin 
Maclaurin (1698-1746), Gabriel Cramer (1704-52), Nicolas Bernoulli (1687-1759). 
Luis-Bertrand Castel (1688-1757). James Bradley (1693-1762). Samuel Klingenstierna 
(1698-1765). John Machin (d.1751). Alexis-Claude Clairaut (1713-65). Leonhard 
Euler (1707-83) and Martin Folkes (1690-1754). 
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15 The original Latin reads as 

Quippe ubi zest quantitas parva. prior forma erit adhibenda; & posterior ubi magna. Et 
hae Series quae componuntur ex Factoribus in progressione Arithmetica. longe magis 
idoneae sunt huic negotio quam vulgares quae constantur ex dignitatibus indeterminatae 
ascendentibus vel descendentibus. 

16 Stirling tabulates the r~ (Stirling's numbers of the second species) and the C~ (Stirling's 
numbers of the first species) on p. 8 and p. II of his (1730). 

17 Some misprints have been corrected. 
18 The original Latin reads as 

Propono jam inventionem Termini qui consistit in medio inter duos primos I & I. Et 
quoniam Logarithmi Terminorum initialium habent differentias lente convergentes, 
primum quaeram Terminum in medio consistentem inter duos ab initio satis remotis, 
verbi gratia, inter decimum primum 3628800 & decimum secundum 39916800: & ex 
eo dato regrediar ad Terminum quaesitum. 

19 The original Latin reads as 

Unde constat Terminum inter I & I esse .8862269251; cujus quadratum est. 7853 ... &c, 
scilicet Area Circuli cujus Diameter est unitas. Atque iIIius Termini duplus 
1.7724538502 [ ... ) aequalis est Radici quadrati numeri 3.1415926 ... &c. qui denotat 
Circumferentia Circuli, cujus Diameter est unitas. 

20 This is Stirling's proof: 

Minuatur variabilis z decremento suo 2n; vel quod idem est, substituatur z - 2n pro z in 
Serie 

z log(z) az an 7an3 )Ian5 
------+------+ ... 

2n 2n 12Z 360z3 1260:5 

& provienet valor ejusdem successivus 

(z-2n)log(z-2n) a(z-2n) an 7an3 
--------+---'----

2n 2n I2(z - 2n) 360(z - 2n)3 

Hunc subducto de valore priore, Terminis prius ad eandem formam per Divisionem 
reductis. & reliquetur 

an anz an' an' 
log(z)--------- ... 

z 2Zz 3Z3 4Z' 

id est, Logarithmus numeri z - n. Adeoque universaliter decrementum duorum valorum 
successivorum Seriei, aequatur Logarithmo ipsius z - n; qui exprimit in genere quam vis 
Logarithmorum qui erant summandi (Stirling (1730), p. 1]6). 

de Moivre expressed log(x!) as follows (see Tweedie (1922), p. 43): 
t log (27T) + (x +t) log x- x 

+~~_~~+ ... +(_ I)n+l. Bn I 
I'2X 3'4 x3 (2n_I)2nX2n I .... 

B" Bz' etc .. being the Bernoulli numbers (see Moivre (1730), pp. 99ff and (1730) 
'Supplementum', pp. 1-18). 

21 Stirling's analytic treatment of cubics was followed by Maclaurin (1720C) devoted to the 
organic description of curves, and by Patrick Murdoch (1746). These became three 
classic commentaries of Newton's' Enumeratio' (I 704b). In the last two the calculus of 
fluxions was not employed. 

22 In a letter to Newton (29 December 1716) John Keill wrote that Stirling had solved the 
problem of orthogonal trajectories, see Newton (1959-77), VI. pp. 282-3. Indeed, like all 
British mathematicians, Stirling did not solve the general case. 
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23 On Maclaurin see Tweedie (1915), Turnbull (1951) and Maclaurin (1982). 
24 This was published as Maclaurin (1724). 
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25 It is interesting that a use of infinitesimals is found in the early work of Maclaurin. He 
later became a great adversary of 'infinites'. Maclaurin's shift is typical of the 
development of the fiuxional calculus in the first half of the century. See chapter 3, 
section 3.4. 

26 This belief is reported, for instance, in D. Gregory (1702), Prefatio, where it is stated that 
the' ancients' knew the inverse square law and the concept of universal gravitation. 

Chapter 3 

I I will not deal here with Berkeley's explanation of the calculus in terms of compensation 
of errors. This idea was reconsidered by Lazare Carnot. 

2 Only a few extremists, such as William Emerson (see section 3.3 below) and John Colson 
(see chapter 4, section 4.1) could think of mathematics as a strictly empirical science. 

3 As far as I know the compensation of errors was not considered favourably by any British 
mathematician. 

4 In his Analysis Aequationum Universalis (1697), Raphson developed several techniques of 
approximating the roots of algebraical equations and the so-called Newton-Raphson 
method, and he discussed the concept of mathematical infinites. 

5 For instance, see in Stirling (1717) the free use of infinitely little and infinitely large 
quantities. 

6 The original Latin reads as 

Hinc ideam habemus analogiae quae est inter Methodum Differentialem & Methodum 
vulgarem Serierum: haec procedit per Fluxiones sive rationes differentiarum ultimas, ilia 
vero generaliter per differentias cujuscumque magnitudinis. 

7 There was a dispute between the fiuxionists, each one claiming to have the right answer 
to Berkeley. It is not my purpose to enter into the details of this quarrel which, strangely 
enough, has been given great importance in Cajori (1919). The texts are the following: 
Berkeley (1734), (1735a) and (1735b): Jurin (1734) and (1735): Walton (1735a), 
(1735b): Robins (1735): Bayes (1736): Hanna (1736): and J. Smith (1737). The 
polemic was continued in a periodical called The Present State of the Republick of Letters, 
for W. Innys and R. Manby, London. The papers on the calculus written by Jurin, Robins 
and Pemberton are from October I 735 to December I 736. This journal was continued 
as The Works of the Learned, in which, from February 1737 to October 1737, Jurin and 
Pemberton continued the debate, Paman (1745), Petvin (1750) and Heath (1752) can 
be read in connection with this dispute. The list of 'answers' to Berkeley is endless. Even 
seventy years later the fiuxionists continued this sterile exercise: e.g. Hales (1800) and 
T. Newton (1805). 

8 For instance, Jurin wrote: 

Where, said I, do you find Sir Isaac Newton using such expressions as the velocities of the 
velocities, the second third and fourth velocities, the incipient celerity of an incipient celerity, the 
nascent augment of a nascent augment? Is this the true and genuine meaning of the words 
fiuxionum mutationes magis aut minus celeres? (Jurin (1735), p. 35). 

9 I am quoting from Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his 
System of tlle World, Motte's translation, revision and notes by Cajori, Berkeley and Los 
Angeles: University of California Press, 5th printing, 1962, p. 38. 

10 It is worthwhile quoting Jurin's answer to Berkeley on this specific point: 

I forbear making any remarks upon your interpretation of the word vanish. I admit it to 
be as you are pleased to make it, that the first supposition is, there are increments; and 
that the second supposition is, there are no increments. What do you infer from this? The 
second supposition, say you, is contrary to the former, and destroys the former, and in 
destroying the former it destroys the expressions, the propositions, and everything else 
derived from the former supposition. Not too fast Good Mr. Logician. If I say, the 
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increments now exist, and the increments do not now exist; the latter assertion will be 
contrary to the former, supposing now to mean the same instant of time in both 
assertions. But if I say at one time, the increments now exist; and sayan hour after, the 
increments do not now exist; the latter assertion will neither be contrary, nor 
contradictory to the former, because the first now signifies one time, and the second now 
signifies another time, so that both assertions may be true. The case therefore in your 
argument does not come up to your Lemma, unless you will say Sir Isaac Newton 
supposes that there are increments, and that there are no increments, at the same instant 
of time. Which is what you have not said, and what, I hope, you will not dare to say. 

But perhaps you will still maintain, that whether the second supposition be esteemed 
contrary, or not contrary, to the first, yet as the increments, which were at first to exist, 
are now supposed not to exist, but to be vanished and gone, all the consequences of their 
supposed existence, as their expressions, proportions, &c. must now be supposed to be 
vanished and gone with them. I cannot allow of this neither. 

Let us imagine yourself and me to be debating this matter, in an open field, at a distance 
from any shelter, and in the middle of a large company of Mathematicians and Logicians. 
A sudden violent rain falls. The consequence is, we are all wet to the skin. Before we can 
get to covert, it cleans up, and the Sun shines. You are for going on with the dispute. I 
desire to be excused, I must go home and shift my clothes and advise you to do the same. 
You endeavour to persuade me I am not wet. The shower, say you, is vanished and gone, 
and consequently coldness and wetness, and every thing derived from the existence of the 
shower, must have vanished with it. I tell you I feel my self cold and wet. I take my leave, 
and make haste home. I am persuaded the Mathematicians would all take the same 
course, and should think them but very indifferent Logicians, that were moved by your 
arguments to stay behind. (Jurin (1735), pp. 96-8). 

I I I am quoting from Sir Isaac Newton's Mathematical Principles of Natural Philosophy and his 
System of the World, Motte's translation, revision and notes by Cajori, Berkeley and Los 
Angeles: University of California Press, 5th printing, 1962, pp. 38-9. 

12 The project of making fiuxions 'visibles, or even tangibles' and to proceed by 'ocular 
demonstrations' was advanced by John Colson in his explanatory notes to Newton 
(1736). See chapter 4, section 4.1. 

13 James Jurin was educated at Christ's Hospital. Cambridge and Leyden. He was head­
master of Newcastle Grammar School from I 7 I 0 to I 7 15. He was also Secretary of the 
Royal Society from 1721 to 1727. Benjamin Robins taught mathematics in London, and 
dedicated himself to questions concerning artillery and fortifications. In 1741 he was 
unsuccessful in his attempt to be elected first master at the Royal Military Academy at 
Woolwich. He died in India, where he was employed, from 1749, as engineer-general of 
the East India Company. For Robins's work on artillery see Robins (1742), reprinted with 
additional tracts in Robins (1761). 

14 The confrontation between Robins and Jurin is in The Present State of the Republick of 
Letters, XVI (Jul. 1735-DeC. 1735); XVII (Jan. I 736-Dec. 1736). 

15 On the limit-avoiding versus limit-achieving interpretation of limits. see Grattan-Guinness 
(1969). 

16 Maclaurin (1742) is not just a work written in answer to Berkeley's criticisms. In 763 
pages Maclaurin covers not only the foundations of the calculus. but also treats 
extensively the theory and the applications of the calculus of fiuxions. Particularly 
valuable are: chapter IX, Book I, on the application of the Taylor expansion in the study 
of maxima. minima and points of infiexion: chapter X, Book I, on the Euler-Maclaurin 
summation formula: chapter XIII, Book I, on isoperimetrical problems: chapter XIV. 
Book I, where Maclaurin reproduced a corrected version of his prize essay on tides 
(1741): and chapter III, Book 2. which stimulated Landen's research (1775) on 
integrals. Some aspects of Maclaurin's mathematics are treated in Tweedie (1915), 
Turnbull (1951) and Scott (1971). 

I 7 Berkeley had already detected the vicious circle: 

It must, indeed, be acknowledged, that he [Newton) used Fluxions, like the Scaffold of 
a building. as things to be laid aside or got rid of. as soon as finite Lines were found 
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proportional to them. But then these finite Exponents are found by the help of Fluxions. 
Whatever therefore is got by such Exponents and Proportions is to be ascribed to 
Fluxions: which must therefore be previously understood. (Berkeley (1734), pp. 58-9). 

18 Forms very similar to these axioms had already been studied by Bayes (1736), p. 18. 
19 'Hae Geneses in rerum natura locum vere habent'; Newton (1704c), p. 165. 

Chapter 4 

I The following should also be noted: Martin (1736), (1759) and (1773), and Colden 
(1751), had a chapter on fiuxions; Hales (1800) was a pompous Latin work mainly 
concerned with foundations; and Agnesi (180 I) was a translation of the famous Italian 
treatise. 

2 The editor of Newton (1737) is unknown. It might have been James Wilson 
(1690-1771). See Wallis and Wallis (1986), p. 109. 

3 As appears from appendix A.I, in the second edition of Emerson (1743) some problems 
on physical astronomy are added. 

4 Quoted in Clarke (1929) from the Simpson's papers, Columbia University Library, New 
York. 

5 Quoted in Clarke (1929) from the Simpson's papers, Columbia University Library, New 
York. 

6 That is: Hodgson (1736; 2nd edn. 1756; 3rd edn. 1758); Muller (1736); Newton 
(1736), (1737), (1745); Simpson (1737), (1750C; 2nd edn. 1776); Blake (1741: 2nd 
edn. 1763): Maclaurin (1742): Emerson (1743; 2nd edn. 1757; 3rd edn. 1768; 4th 
edn. 1773); Rowe (1751: 2nd edn. 1757; another? 1762: 3rd edn. 1767); Rowning 
(1756): Saunderson (I 756a): Lyons (1758); Holliday (I 777). From 1777 to 1795 there 
was a period of silence, broken only by the edition of Newton's Opera (1779-85) and the 
second edition in 1792 of Simpson (1752). Then in the last years of the century and the 
first decades of the nineteenth century we find an increase in publications. Vince (1795) 
ran to five editions and Dealtry (1810) ran to a second edition in 1816. In 1801 we find 
the second edition of Maclaurin (1742) and Agnesi (1801); in 1809 the fourth edition 
of Rowe (1751) and the third of Blake (1741): in 1805 and 1823 the third and fourth 
editions of Simpson (1750c). 

7 For John Nourse Emerson wrote: Cyc/omathesis (1763-9 I), a course consisting of many 
volumes to which belonged The Arithmetic of lnfinites (1767) as volume V, Mechanics; or 
the Doctrine of Motion (1769a) as volume VII, and A System of Astronomy (1769b) as 
volume VIII. Tracts (1793) was published for F. Wingrave, successor to John Nourse. On 
John Nourse see Feather (1981). 

8 On Simpson see Hutton (1792) and Clarke (1929). 
9 Agnesi (1801) was revised by John Hellins. 

10 Hodgson was a protege of Flamsteed: he married Flamsteed's niece and was co-editor of 
Flamsteed's Atlas Coe/estis. 

II Simpson (1752) was reissued in 1792 and 1810. It was also translated into French. 
12 On Hutton's biography see Howson (1982), pp. 59-74. See also anonymous (1805), 

Bruce (1823) and O. Gregory (1823). 
13 On the Tripos Exam see Ball (1880) and Gascoigne (1984). 
14 This letter quoted in Gascoigne (1984) is from The Connoisseurs, CVII, Thursday 12 

February 1756. I am quoting from The Connoisseurs. By Mr. Town, Critic and Censor­
General, 6th edn .. vol. IV, for J. Rivington et al .. Oxford, published in 1774, pp. 18-24. 
The letter, probablY written by the editor for the amusement of his readers, is signed 
'B.A.'. 

15 However, a distinction should be made between the geometric classicism of Robert 
Simson and Matthew Stewart (who were isolated from the learned society of common­
sense philosophers), John Robison's criticisms of the analytic methods in mechanics and 
Dougald Stewart's perplexity toward analytic methods in algebra. Furthermore, a key 
figure in late eighteenth-century Scottish science such as John Playfair was, as we will 
see in chapter 7, section 7.2, very interested in introducing analytical techniques both at 
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a research and at a teaching level. The situation in Scotland was therefore more varied 
than is usually believed: together with' pure geometricians' there were scientists quite 
prepared to accept the' analysis' of the continentals. 

16 On the 'philomaths' see Pedersen (1963), P. J. Wallis (1973) and Wallis and Wallis 
(1986). 

I 7 The members of the famous Lunar Society of Birmingham devoted attention to 
experimental science rather than mathematics. 

18 Maclaurin with his Account of Sir Isaac Newton's Philosophical Discoveries (1748a) is 
unusually deep and thoughtful: his last effort is a philosophically valuable analysis of the 
methodology ofthe Newtonian mathematization of mechanics and astronomy. However, 
generally the introductions to natural philosophy, even though longer in comparison 
with Whiston's and Keill's lectures, did not invite the reader to study any philosophical 
or mathematical problem. A famous case of how this kind of simple popularization of 
science could become extremely profitable is that of Benjamin Martin (1704-82), one of 
the most successful itinerant mathematics teachers and demonstrators of experiments. 
His vast production of popular scientific books was exceedingly derivative. In Martin 
(1736), (1739), (1759) and (1773) there are some sections on the fiuxional calculus. On 
Martin see Millburn (1976) and (1986). Also, the increasing success of scientific 
dictionaries and encyclopaedias is a measure of the interest in a simple approach to 
science: beside the famous Ephraim Chamber's Cyclopaedia, there were the second edition 
of Edmund Stone's Mathematical Dictionary (1726) in 1743, Temple Henry Croker, 
Thomas Williams and Samuel Clark's Complete Dictionary of Art and Sciences (Clark et al. 
(1764, 1765. 1766)), which was derived from Chamber and the French Encyclopedie, and 
Thomas Walter's A New Mathematical Dictionary (1762 ?). 

19 I have found in MS Graves 23 (2), University College Library (London), several letters to 
John Nourse from authors of scientific books. These should be read together with the 
manuscripts described in Feather (1981). Useful information on eighteenth-century 
publishers can be found in Rivers (1982): see especially Rousseau's contribution (1982). 

Chapter 5 

I On the development of fiuid mechanics see Truesdell (1954): on the shape of the Earth 
see Todhunter (1873) and Aiton (1955): and on the Moon's orbit see Waff (1976). In 
this chapter I will concentrate on the researches by Simpson and Maclaurin on the 
attraction of ellipsoids. The contributions of the British in the field of physical astronomy 
were negligible in comparison with contemporary continental research. I will give in this 
note some information on the researches of the fiuxionists on planetary motions. 

Charles Walmesley, Thomas Simpson and Matthew Stewart were the three British 
mathematicians who wrote on physical astronomy around the middle of the century. 

Charles Walmesley (,Pastorini') (1722-97) was a Roman Catholic prelate who was 
educated in the English Benedictine College of St Gregory at Douai and at the Sorbonne. 
He was consecrated Bishop of Rama. His career in the Church culminated in 1770 when 
he became vicar-apostolic. He died in 1797 at Bath. His first works (I 749a) and (I 749b) 
were devoted to the theory of the Moon and to Cotes's integrals. Walmesley (1757) 
treated the precession of the equinoxes, following some theorems on the same subject by 
Silvabelle (1755). Both papers were criticized in a note by Simpson (1758). Walmesley 
(1759) investigated the effects of the equatorial bulge of the Earth on the motion of the 
Moon. while (I 762) was an attempt at a general theory of perturbations. Walmesley in 
his researches tried to vindicate Newton's results on perturbations against criticisms such 
as those of Clairaut. 

By contrast, Thomas Simpson tried to produce new results. His (1757) is a remarkable 
text. Simpson correctly approximated the motion of the Moon's apogee by taking into 
consideration not only the component of the perturbative force of the Sun along the 
Earth-Moon radius vector. but also its tangential component. However. his claim of 
having attained this result independently from Clairaut (1752) hardly appears credible. 

Instead of looking to the continent for inspiration. Matthew Stewart (1717-85) 
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followed strictly geometrical methods. His preference for geometrical methods was 
certainly the result of the education he received in Glasgow, where in 1734 he became 
a student of Robert Simson. In 1741 he moved to Edinburgh where he attended 
Maclaurin's lectures. Stewart succeeded Maclaurin in the Chair of Mathematics in 1747 
and retired from teaching in 1772. During this period he wrote (1746) and (1763a) on 
pure geometry, and (1761) and (I 763b) on physical astronomy. His best achievements 
are definitely in the field of geometry, while his work on astronomy needs to be mentioned 
here because of the responses it evoked in Great Britain. Stewart's purpose was to tackle 
the study of planetary motions by using only geometrical methods. This project had also 
been contemplated by Simson. 

Stewart's geometrical methods do not resemble those employed by Newton in the 
Principia or by Maclaurin in his (1742). His classicism led him to discard the geometrical 
approximations of the kinematical method of fiuxions. He thought that it was possible to 
reinterpret the . geometry of fiuxions' within the framework of Archimedean geometry. 
The only mathematical tools permitted by him were well known from the times of the 
Greeks. His works are written without algebraical formulae: he prefers to write down an 
endless series of proportions. 

Stewart's ambitious programme was to tackle the three-body problem with the aid of 
ancient geometry. Furthermore, he wanted to determine the distance of the Sun from the 
Earth by studying the effect of the disturbing force of the Sun on the motion ofthe Moon's 
apogee. His attempt would not have attracted much attention had he not been the 
Professor of Mathematics at the University of Edinburgh and one of the most reputed 
scientists in Scotland. Samuel Horsley, the editor of Newton's Opera (1779-85), praised 
Stewart's work in his papers in the Philosophical Transactions, (1768) and (1770). A first 
criticism appeared in Dawson's Four Propositions (1769). John Dawson (1734-1820) 
was merely a self-taught mathematician who worked as a surgeon and an itinerant 
schoolmaster, but he was able to indicate in more than 200 pages of analysis where the 
professor had gone wrong. Stewart's errors led him to give an estimation of the Sun's 
distance far superior to the one established by the observations of the transit of Venus in 
176 I. Another dart from a non-professional mathematician was fired by John Landen 
with his Animadversions on Dr. Stewart's Computation of the Sun's Distance from the Earth 
(177Ib). Landen was able to dismiss Stewart's work in 18 pages of algebraical spot 
checks of the professor's 600 pages of geometrical proofs. However, it would be wrong 
to see Landen (I 771b) as a successful criticism of the geometrical tradition of Newton's 
Principia, since Stewart's mathematics had little to do with the geometry of Newton. With 
Stewart a programme inaugurated by Simson in Glasgow and consisting in the 
development the 'analysis of the Ancients' and its application to the study of natural 
philosophy came to an end. It had very little impact on the development of the calculus 
of fiuxions and belongs more to the history of pure geometry. 

The best studies on Newton's theory of the Moon are I. B. Cohen's introduction to 
Newton (1975), Waff (1976) and Whiteside (1976). In 1702 Newton published his 
revised theory (1702), which was published in Latin in D. Gregory (1702), pp. 332-6, 
and in English as a separate pamphlet. This small tract ran into four Latin printings and 
thirteen English printings in the eighteenth century. On Matthew Stewart see Playfair's 
biography, Playfair (I 788a), reprinted in Playfair (1822a), IV, pp. 2-30. 

2 On Clairaut see Greenberg (1979). 
3 On Newton's, Bernoulli's and Euler's theories of tides see Aiton (1955). 
4 See Todhunter (1873), I, pp. 133-75, for a modernized summary of Maclaurin's results. 
5 Simpson reworked into a more orderly form these two essays in Simpson (1750c). II, 

pp. 445-79. I will follow this second version. 
6 These theorems allow Simpson to study the form of equilibrium of a rotating fiuid. He 

confines himself to studying Huygens's condition (only in the Doctrine and Application of 
Fluxions (I 750c) is there a treatment of Newton's condition of balancing columns). His 
accurate study of the relationship between the eccentricity of a fiuid oblatum and the 
angular velocity of rotation is a notable achievement. Simpson proves that' if the angular 
velocity of rotation exceeds a certain limit, the oblatum is no longer a possible form of 
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equilibrium' (Todhunter (1873), 1. p. 180). and he hints that below this value there are 
two oblata as forms of equilibrium. The latter result is suggested by a table in which the 
entries in the first column are proportional to the eccentricity. while those in the second 
are proportional to the corresponding angular velocity which meets the conditions of 
equilibrium. Since the entries in the first column are monotonically decreasing. while 
those in the second decrease to a minimum and then increase. it appears that for the 
same angular velocity there will be two forms of equilibrium. Simpson continues his essay 
by studying the case in which a spherical kernel is surrounded by a less dense fluid. In 
the second essay. which follows an analysis very similar to the first. Simpson treats the 
attraction at the surface of spheroids. which are not ellipsoids of revolution but are 
'nearly spherical'. For further details see Todhunter (1873). 1. pp. 176-88. 

7 The original French reads as 

j'ai juge a propos de traiter en particulier de la figure des Spheroides homogenes, & 
d'abandonner rna Methode. Quant aces Spheroides. pour suivre celie que M. Mac Laurin 
vient de donner dans son excellent Traite des Fluxions. Cette Methode m'a paru si belle 
& si sr;avante. que rai crn faire plaisir ames Lecteurs de la mettre ici. 

8 The original French reads as 

Pour qu'un Spheroide fiuide tournant autour de son Axe. & dans lequel la Loi de la 
gravite est donee. puisse conserver une forme constante; iI suffit qu'un Canal quelconque 
rentrant en lui-meme & place dans Ie plan du Meridien de ce Spheroide. soit toujours en 
equilibre. en ne considerant que la seule force de la gravite sans la force centrifuge. 

9 The original French reads as 

Si on vouloit presentement faire usage de cette quantite. pour trouver en termes finis la 
valeur du poids du Canal ON, en supposant que la courbure de ce Canal fut donnee par 
une equation entre x & y. on commenceroit par faire evanouir y & dy de Pdy + Qdx; cette 
differentielle n'ayant plus que x & dx. on nntegreroit en observant de completter 
nntegrale. c'est-a-dire d'ajouter la constante necessaire, afin que Ie poids fut nul. lorsque 
x seroit egal a CG: On seroit ensuite x = CI. & ron auroit Ie poids total de ON. Mais comme 
requilibre du Fluide demande que Ie poids de ON ne depende pas de la courbure de OSN. 
c' est-a-dire de la valeur particulier de y en x. iI faut donc que Pdy + Qdx puisse s'integrer 
sans connoitre la valeur de x, c'est-a-dire qu'iI faut que Pdy + Qdx soit une differentielle 
complette, afin qu'i/ puisse y avoir equiIibre dans Ie Fluide. 

10 The original French reads as 

une quantite qui a pour integrale une fonction de x & de y. ydx + xdy. (ydx + xdy)/ 
2'; (aa+ xy) sont des differentielles complettes. parce qU'elles ont pour integrales 
xy.'; (a2 + xy). 

I I The original French reads as 

la differentielle de la fonction P. prise en supposant x seulement variable. 

Chapter 6 

I On the reluctance of the British to accept imaginary numbers. see Na'gel (1935). Even an 
open minded mathematician like John Play fair could maintain in Playfair (1779) that the 
use of complex numbers was justified only in the case of the trigonometric functions 
because of the geometrical analogies between the circle and the hyperbola (see chapter 
7. section 7. 2 ). 

2 From 1762 to 1788 Landen was land agent to William Wentworth. second Earl 
Fitzwilliam. 

3 Some of Landen's letters to Simpson are reproduced in Clarke (1929). pp. 176-81. 
4 I wish to acknowledge my indebtedness to Angelo Guerraggio for his comments on 

Landen's foundation of the calculus and Landen's work on elliptic integrals; see 
Guerraggio (1987). 
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5 An interesting anonymous article on Waring is in the additions to Hutton (I 796. 1795). 
2nd edn .. pp. 717-26. I owe this reference to Ivor Grattan-Guinness. 

6 Lagrange and Laplace were referred to in the second edition of Waring (1776). 
7 The original Latin reads as 

Data quantitate A. in qua continetur duae variabiles quantitates x & y: sit ejus fiuxio 
A = ax + by; inveniantur fiuxiones quantitatum a & b. quae sint respective Ii = ax + fly. 
b = 1TX + py. ubi a. b. a. fl. 1T. p. sunt functiones litera rum x & y; tum erit 1T = fl. Le. 1T 

erit eadem quantitas ac fl. 
Cor. Hinc. data fiuxione (A = ax+by) duas variabiles quantitates x & y involvente. 

inveniri potest; utrum ejus fiuens exprimi potest. necne. Inveniantur enim fiuxiones 
quantitatum a & b. & si Ii = ax + fly. & b = 1TX + py. & 1T = fl. tum exprimi potest fiuens; 
sin aliter vero non. 

8 The other equations are taken without recognition from Euler (1768-70). See Waring 
(1776). pp. 231-54. and 2nd edn .. pp. 285-305. 

Chapter 7 

I On the teaching of mathematics in the Scottish universities during the eighteenth 
century see Gibson (1927)' On Glasgow University see Coutts (1909) and Mackie (1954). 
On Aberdeen University see Rait (1895) and Ponting (1979a) and (1979b); on King's 
College see P.J. Anderson (1893) and Innes (1854); on Marischal College see P.J. 
Anderson (1889-98). On St Andrews University see J.M. Anderson (1905). Dickinson 
(1952) and Cant (1970). On Edinburgh University see Grant (1884). 

2 Trail studied at Marischal from 1759 to 1763. In 1766 he graduated B.A. at Glasgow. 
He wrote (1812) a biography of his friend Robert Simson. 

3 At King's a professorship of mathematics was instituted in 1703. Thomas Bower 
(1660 ?-I 724) was appointed in 1703. but his teaching was discontinued and he 
resigned in 1717. The second and last Professor of Mathematics at King's College in the 
eighteenth century was Alexander Rait. He was appointed in 1732. 

4 On the Philosophical Society of Edinburgh see R. L. Emerson (1985). 
5 On John Playfair see Jeffrey (1822). 
6 However. a defence of Playfair (1779) appeared in a review of Woodhouse's paper 

(ISOla). See anonymous (1803a). 
7 Another important paper in which continental mathematics was compared with British 

mathematics is Toplis (1805). 
8 On Ivory see the obituary in the Proceedings of the Royal Society. IV (1842). pp. 406-12. 
9 On Wallace see Panteki (1987). 

10 John Hellins (d.1827) published some papers in the Philosophical Transactions in the same 
years as Ivory and Wallace. He also concerned himself with the development of 
(a2 +b2 -2abcos(O))". Hellins was a self-taught mathematician who worked for some 
time as an assistant of Maskelyne at the Greenwich Observatory. See Hellins (1781). 
(1788). (1794). (1796). (I 798a). (1798b). (1800). (1802) and (1811). 

II The only biography of Spence is Galt (1820). prefaced to the posthumous Spence (1820). 
12 Spence (1820) seems to be quite rare. Probably his friends supported the cost of the 

printing of a limited number of copies. 

Chapter 8 

I Royal Warrant of 30 April 1741 quoted in W.O. Jones (1851). p. I. W.O. Jones (1851) 
and Smyth (1961) are the best sources of information on Woolwich. See also Manners 
(1764). Townshend (1776). Dupin (1820) and Porter and Watson (1889-1915). 

2 That is: David Gregory (1745) A Treatise of Practical Geometry; John Muller (1747) The 
Attack and Defence of Fortify'd Places ... : John Muller (1746) A Treatise Containing the 
Elementary Part of Fortification ..... Vauban' is probably Cambray (1691) The New Method 
of Fortification. as Practised by Monsieur de Vauban ... (translated by A. Swall). a work 
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published in French in 1689 at Amsterdam. Another possible candidate is Seoastien Ie 
Prestre de Vauban (1737. 1742) De l'attaque et de la Defense des Places (but there are no 
English translations). 

3 That is: Nicholas Saunderson (17s6b) Select Parts of Professor Saunderson's Elements of 
Algebra ... : Thomas Simpson (1760) Elements of Geometry ...• 2nd edn.; William Hawney 
(1717) The Compleat Measurer ... ; John Joshua Kirby (1754) Dr Brook Taylor's Method of 
Perspective made easy ... ; John Lodge Cowley (1765) The Theory of Perspective Dem­
onstrated ... : Thomas Salmon (I 749) A New Geographical and Historical Grammar ... : Joseph 
Harris (173 I) The Description and Use of the Globes and the Orrery .... 

4 On Charles Hutton see Bruce (1823) and O. Gregory (1823). A recent and very useful 
biography of Hutton is in Howson (1982). chapter 4. pp. 59-74. See also anonymous 
(1805)· 

5 Hutton (1821) appeared in the Philosophical Transactions just one year after Banks's 
death. David P. Miller sees behind the Hutton-Banks controversy an opposition between 
mathematicians and astronomers • drawn from the middle and lower ranks of British 
provincial society' and the • strong aristocratic fiavour and natural historical bias of 
metropolitan scientific institutions' (Miller (1983). p. 10 passim). For a different opinion 
see Boas Hall (1984). 

6 On the Royal Military College see Sandhurst (1802) and (1809). Smyth (1961) and 
Thomas (1961). Sandhurst (1849) and Mockler-Ferryman (1900) are less useful. See 
also the article ·College. Royal Military' in Hutton (1796. 1795). 2nd edn .. the article 
. Academy' in Encyclopaedia Britannica. supplement to the fourth. fifth and sixth editions 
and Dupin (1820). 

7 Isaac Dalby (1744-1824) was Professor of Mathematics in the Senior Department of the 
Royal Military College from 1799 to 1820. Before being appointed. he had worked from 
1787 to 1790 as an assistant to William Roy (1726-90). Major-General of the Royal 
Engineers. on the Trigonometrical Survey of England which began in 1784. The survey 
continued after 1791 under the direction of Colonel Williams and Captain Mudge. 
Williams (1762-1820) was a Woolwich man who later became Lieutenant-Governor of 
the Academy. Dalby published papers concerned with the survey in the Philosophical 
Transactions. Other details on Dalby's early career as a philomath can be gathered from 
his posthumous autobiography. Dalby (1830). 

8 The Mathematical Repository is a quite rare publication. The best guide for the English 
mathematical serials is still Archibald (1929). 

9 See Hutton (I 775b). I. pp. 166-7. 258. 315. for the three pre-I 730 fiuxional answers 
by Anna Philomathes in 1719. Tapper in 1725 and Tho. Grant in 1729. respectively. 

10 Wallace's translation of Legendre (1794) is in Leybourn (1806-35). II part 3 (1809). 
pp. 1-34. and III part 3 (1814). pp. 1-45. Wallace translated also in the first volume of 
the Repository (new series) two papers by Lagrange on spherical triangles and on 
numerical analysis (see Panteki (1987)). 

I I Legendre (1794) was inserted . at the request of several eminent mathematicians' 
(Leybourn (1806-35). II part 3 (1809). p. m). 

12 The translation (Carnot (1800-01)) into English of Carnot's well-known work on the 
foundation of the calculus was by William Dickson and is in Philosophical Magazine. VIII 
(1800) and IX (1801). 

13 The editions of the Encyclopaedia Britannica are as follows: 

First edition (3 vols) Edinburgh. 1771 (published in parts from 1768). Another issue. 
London: for Dilly. 1773: another issue. London: for Donaldson. 1775. 

Second edition (10 vols). Edinburgh. 1778-83: another issue. Dublin. 1791-7. plus 
Supplement. 1801. 

Third edition (18+2 vols). Edinburgh 1797-1801. 
Fourth edition (20 vols). Edinburgh. 1810. 
Fifth edition (20 vols). Edinburgh. 1817. 
Sixth edition (20 vols). Edinburgh. 1817. 
Supplements to the fourth. fifth and sixth editions (6 vols). 1824. 

Other encyclopaedias published before 1820 are: Encyclopaedia Perthensis. Encyclopaedia 
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Londiniensis. Encyclopaedia Mancuniensis and the British Cyclopaedia. For further 
information on this topic see Grattan-Guinness (1981) and (1985). 

14 For further information on Wallace's articles see Panteki (1987). 
15 Note that these encyclopaedias were often published in parts. The year on the title pages 

indicate when the work was finished. Each article was published some time before that 
date. For instance. the Edinburgh Encyclopaedia has 1830 on the title page. but the article 
. Fluxions'. which is in volume 9. was published in 1815. I owe this information to Ivor 
Grattan-Guinness and Maria Panteki. 

16 Wallace. after reading Peacock (1834). wrote a letter to Peacock claiming priority in 
introducing the differential notation into Great Britain. This letter has been reproduced 
in Panteki (1987). 

17 The attribution to Bonnycastle seems safe enough. This article is therefore quoted as 
Bonnycastle (1810). In the Philosophical Magazine. LVI (1820). pp. 218-24. there is a 
useful table of the authors who contributed to The Cyclopaedia (ed. A. Rees) (the papers 
appeared unsigned). as well as another chronological table of the time of publication of 
the articles. It appears that the article' Functions' was published between 27 June and 
8 October 1810. Possible authors include Peter Barlow. John Bonnycastle and John 
Pond. who are reported as contributors of articles on analysis and algebra. Ivory 
contributed articles on conic sections. curves and geometry. 

18 For further information on the Royal Naval Academy see appendix 0.3 and Lewis (1939). 
(1961) and (1965). I would like also to acknowledge my debt to Roger Bray (University 
of Essex) for his detailed letter on the Royal Naval Academy which I used in this section. 

Chapter 9 

I The Senate House problems for the years 1801-10 were published in 1810 by a 
. graduate of the University' in order to challenge the criticisms in Playfair (1808) against 
the study of mathematics in Cambridge. The anonymous editor asserted in the preface 
that Playfair's students would not have been able to pass the Cambridge exams. This is 
probably true. But. while Play fair had aimed to stimulate an interest in new methods and 
results in his lectures. the Cambridge students were required to attain a level of 
understanding in mathematics which did not go beyond the Cotesian forms. See 
anonymous (1810). George Atwood's researches are typical of a Cambridge educated 
mathematician. His rather elaborate works are notable for the history of engineering. but 
his mathematics is trivial: see Atwood (1784). (1794). (1796). (1798) and (1801). 

2 On Vince see Grattan-Guinness (1986). 
3 Nicholas Saunderson's lectures circulated widely in the eighteenth century. The 

manuscript copies I have seen are Cambridge University Library (Cambridge). MSS Add 
6312.2977.589: University College (London). MSS Add 243: British Library (London) 
MS Add Eg. 834: Bodleian Library (Oxford) MS Rigaud 3-4. 

4 The second edition of Dealtry (1810) was given a bad review. possibly by Playfair. in the 
Edinburgh Review: see ([Playfair] (1816)). 

5 On Woodhouse see Becher (1980). 
6 This appreciative review appeared anonymously in The Monthly Review. I quote it as 

[Woodhouse] (1799). Another review. probably written by Woodhouse. concerned 
Lacroix (1797-1800) large treatise on the calculus: see [Woodhouse] (1800). 

7 Readers acquainted with Peacock's principle of permanence of equivalent forms will find 
many antiCipations in Woodhouse's methodology. For Woodhouse's infiuence on 
Peacock and Babbage see Becher (1980). 

8 We read in Wallis and Wallis (1986). p. 439. that Adam Walker (1731-1821). author 
of works on natural philosophy. book-keeping. the use of globes. and a well known 
scientific lecturer. taught in York in the I 760s and gave lectures for the Dublin Society. 

9 On Dublin University see W.B.S. Taylor (1845). 
10 On the reform of mathematics in Ireland see MacMillan (1984) and Grattan-Guinness 

(1988 ). 
II See Grattan-Guinness (1988) for a complete list of Irish works in the period from 1782 

to 1840. 
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12 We can mention here L'Huilier (1796), a paper published in the Philosophical Transactions 
which might have inspired Woodhouse's formal approach to trigonometry. Thomas 
Knight was another British Lagrangian who published in the Philosophical Transactions. 
Knight (ISII) and (ISI6) were concerned with Arbogast (ISOO): Knight (ISI7a). 
(lSI 7b) and (lSI 7C) were written in differential notation and referred to Spence (IS09). 
See also Knight (ISl2a) and (ISl2b). 

13 This famous pun is reported in Babbage (IS64). 
14 On the Analytical Society see Enros (19SI) and (19S3). 
15 Peacock wrote: 

M. Cauchy. in his Let;ons sur Ie Calcul Infinitesimal. [ ... J. has attempted to conciliate the 
direct consideration of infinitesimals with the purely algebraical vi~w of the principles of 
this calculus. which Lagrange first securely established. [ ... J. He considers all infinite series 
as fallacious which are not convergent, [ ... J, it must be an erroneous view of the principles 
of algebra which makes the result of any general operation dependent upon the 
fundamental laws of algebra to be fallacious. (Peacock (IS34), pp. 247-Sn) 

16 John Herschel worked mainly on the calculus operators: see Herschel (ISI4), (ISI6), 
(ISIS) and (IS22). Babbage devoted himself to the calculus of functions: see Babbage 
(ISIS). (ISI6). (ISI7a). (ISI7b) and (IS22). 
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